586 research outputs found

    Valuing initial teacher education at Master's level

    Get PDF
    The future of Master’s-level work in initial teacher education (ITE) in England seems uncertain. Whilst the coalition government has expressed support for Master’s-level work, its recent White Paper focuses on teaching skills as the dominant form of professional development. This training discourse is in tension with the view of professional learning advocated by ITE courses that offer Master’s credits. Following a survey of the changing perceptions of Master’s-level study during a Post Graduate Certificate in Education course by student teachers in four subject groups, this paper highlights how the process of professional learning can have the most impact on how they value studying at a higher level during their early professional development

    Spin Evolution of Supermassive Black Holes and Galactic Nuclei

    Full text link
    The spin angular momentum S of a supermassive black hole (SBH) precesses due to torques from orbiting stars, and the stellar orbits precess due to dragging of inertial frames by the spinning hole. We solve the coupled post-Newtonian equations describing the joint evolution of S and the stellar angular momenta Lj, j = 1...N in spherical, rotating nuclear star clusters. In the absence of gravitational interactions between the stars, two evolutionary modes are found: (1) nearly uniform precession of S about the total angular momentum vector of the system; (2) damped precession, leading, in less than one precessional period, to alignment of S with the angular momentum of the rotating cluster. Beyond a certain distance from the SBH, the time scale for angular momentum changes due to gravitational encounters between the stars is shorter than spin-orbit precession times. We present a model, based on the Ornstein-Uhlenbeck equation, for the stochastic evolution of star clusters due to gravitational encounters and use it to evaluate the evolution of S in nuclei where changes in the Lj are due to frame dragging close to the SBH and to encounters farther out. Long-term evolution in this case is well described as uniform precession of the SBH about the cluster's rotational axis, with an increasingly important stochastic contribution when SBH masses are small. Spin precessional periods are predicted to be strongly dependent on nuclear properties, but typical values are 10-100 Myr for low-mass SBHs in dense nuclei, 100 Myr - 10 Gyr for intermediate mass SBHs, and > 10 Gyr for the most massive SBHs. We compare the evolution of SBH spins in stellar nuclei to the case of torquing by an inclined, gaseous accretion disk.Comment: 25 page

    Accretion during the merger of supermassive black holes

    Get PDF
    We study the evolution of disk accretion during the merger of supermassive black hole binaries in galactic nuclei. In hierarchical galaxy formation models, the most common binaries are likely to arise from minor galactic mergers, and have unequal mass black holes. Once such a binary becomes embedded in an accretion disk at a separation of the order of 0.1 pc, the merger proceeds in two distinct phases. During the first phase, the loss of orbital angular momentum to the gaseous disk shrinks the binary on a timescale of ~10 Myr. The accretion rate onto the primary black hole is not increased, and can be substantially reduced, during this disk-driven migration. At smaller separations, gravitational radiation becomes the dominant angular momentum loss process, and any gas trapped inside the orbit of the secondary is driven inwards by the inspiralling black hole. The implied accretion rate just prior to coalescence exceeds the Eddington limit, so the final merger is likely to occur within a common envelope formed from the disrupted inner disk, and be accompanied by high velocity (~10,000 km/s) outflows.Comment: ApJL, in pres

    The origin of intergalactic thermonuclear supernovae

    Full text link
    The population synthesis method is used to study the possibility of explaining the appreciable fraction (20^+12_15%) of the intergalactic (no-host) type Ia supernovae observed in galaxy clusters (Gal-Yam ete al. 2003) by binary whote dwarf merginngs in the cores of globular clusters. In a typical globular cluster, the number of merging double white dwarfs is fount to be smaller than 10^{-13} per year per average cluster star during the entire evolution of the cluster, which is a factor of 3 higher than in a Milky-Way-type galaxy. From 5 to 30% of the merging white dwarfs are dynamically expelled from the cluster with barycenter velocities up to 150 km/s. SN Ia explosions during the mergers of binary white dwarfs in dense star clusters may account for \sim 1% of the total rate of SN Ia in the central parts of galaxy clusters if the baryon mass fraction in such star clusters is \sim 0.3%.Comment: 8 pages, 3 figs. Astronomy Letters (in press

    Gravitational waves from coalescing binaries and Doppler experiments

    Get PDF
    Doppler tracking of interplanetary spacecraft provides the only method presently available for broad-band searches of low frequency gravitational waves. The instruments have a peak sensitivity around the reciprocal of the round-trip light-time T of the radio link connecting the Earth to the space-probe and therefore are particularly suitable to search for coalescing binaries containing massive black holes in galactic nuclei. A number of Doppler experiments -- the most recent involving the probes ULYSSES, GALILEO and MARS OBSERVER -- have been carried out so far; moreover, in 2002-2004 the CASSINI spacecraft will perform three 40 days data acquisition runs with expected sensitivity about twenty times better than that achieved so far. Central aims of this paper are: (i) to explore, as a function of the relevant instrumental and astrophysical parameters, the Doppler output produced by in-spiral signals -- sinusoids of increasing frequency and amplitude (the so-called chirp); (ii) to identify the most important parameter regions where to concentrate intense and dedicated data analysis; (iii) to analyze the all-sky and all-frequency sensitivity of the CASSINI's experiments, with particular emphasis on possible astrophysical targets, such as our Galactic Centre and the Virgo Cluster.Comment: 52 pages, LaTeX, 19 Postscript Figures, submitted to Phys. Rev.

    Formation of Galactic Nuclei

    Get PDF
    We investigate a model in which galactic nuclei form via the coalescence of pre-existing stellar systems containing supermassive black holes. Merger simulations are carried out using N-body algorithms that can follow the formation and decay of a black-hole binary and its effect on the surrounding stars down to sub-parsec scales. Our initial stellar systems have steep central density cusps similar to those in low-luminosity elliptical galaxies. Formation of a black-hole binary transfers energy to the stars and lowers the central density; continued decay of the binary creates a ~1/r density cusp similar to those observed in bright elliptical galaxies, with a break radius that extends well beyond the sphere of gravitational influence of the black holes. The decay of the black hole binary is followed over a factor of ~20 in separation after formation of a hard binary, considerably farther than in previous simulations. We see almost no dependence of the binary's decay rate on number of particles in the simulation, contrary to earlier studies in which a lower initial density of stars led to a more rapid depletion of the binary's loss cone. We nevertheless argue that the decay of a black hole binary in a real galaxy would be expected to stall at separations of 0.01-1 pc unless some additional mechanism is able to extract energy from the binary. Our results support a picture in which the observed dependence of nuclear cusp slope on galaxy luminosity is a consequence of galaxy interactions. We also discuss the implications of our results for the survivability of dark-matter cusps.Comment: 35 pages, 19 postscript figures, uses emulateapj.sty, onecolfloat.st

    N-body simulations of gravitational dynamics

    Full text link
    We describe the astrophysical and numerical basis of N-body simulations, both of collisional stellar systems (dense star clusters and galactic centres) and collisionless stellar dynamics (galaxies and large-scale structure). We explain and discuss the state-of-the-art algorithms used for these quite different regimes, attempt to give a fair critique, and point out possible directions of future improvement and development. We briefly touch upon the history of N-body simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu

    High accuracy measurement of gravitational wave back-reaction in the OJ287 black hole binary

    Get PDF
    Blazar OJ287 exhibits large thermal flares at least twice every 12 years. The times of these flares have been predicted successfully using the model of a quasi-Keplerian eccentric black hole binary where the secondary impacts the accretion disk of the primary, creating the thermal flares. New measurements of the historical light curve have been combined with the observations of the 2015 November/December flare to identify the impact record since year 1886, and to constrain the orbit of the binary. The orbital solution shows that the binary period, now 12.062 years, is decreasing at the rate of 36 days per century. This corresponds to an energy loss to gravitational waves that is 6.5 ± 4 % less than the rate predicted by the standard quadrupolar gravitational wave (GW) emission. We show that the difference is due to higher order gravitational radiation reaction terms that include the dominant order tail contributions

    Education can improve the negative perception of a threatened long-lived scavenging bird, the Andean condor

    Get PDF
    Human-wildlife conflicts currently represent one of the main conservation problems for wildlife species around the world. Vultures have serious conservation concerns, many of which are related to people's adverse perception about them due to the belief that they prey on livestock. Our aim was to assess local perception and the factors influencing people's perception of the largest scavenging bird in South America, the Andean condor. For this, we interviewed 112 people from Valle Fértil, San Juan province, a rural area of central west Argentina. Overall, people in the area mostly have an elementary education, and their most important activity is livestock rearing. The results showed that, in general, most people perceive the Andean condor as an injurious species and, in fact, some people recognize that they still kill condors. We identified two major factors that affect this perception, the education level of villagers and their relationship with livestock ranching. Our study suggests that conservation of condors and other similar scavengers depends on education programs designed to change the negative perception people have about them. Such programs should be particularly focused on ranchers since they are the ones who have the worst perception of these scavengers. We suggest that highlighting the central ecological role of scavengers and recovering their cultural value would be fundamental to reverse their persecution and their negative perception by people.Fil: Cailly Arnulphi, Verónica Beatríz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; ArgentinaFil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Borghi, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentin
    corecore