911 research outputs found

    Determination of mean surface position and sea state from the radar return of a short-pulse satellite altimeter

    Get PDF
    Using the specular point theory of scatter from a very rough surface, the average backscatter cross section per unit area per radar cell width is derived for a cell located at a given height above the mean sea surface. This result is then applied to predict the average radar cross section observed by a short-pulse altimeter as a function of time for two modes of operation: pulse-limited and beam-limited configurations. For a pulse-limited satellite altimeter, a family of curves is calculated showing the distortion of the leading edge of the receiver output signal as a function of sea state (i.e., wind speed). A signal processing scheme is discussed that permits an accurate determination of the mean surface position--even in high seas--and, as a by-product, the estimation of the significant seawave height (or wind speed above the surface). Comparison of these analytical results with experimental data for both pulse-limited and beam-limited operation lends credence to the model. Such a model should aid in the design of short-pulse altimeters for accurate determination of the geoid over the oceans, as well as for the use of such altimeters for orbital sea-state monitoring

    Determination of RMS height of a rough surface using radar waves

    Get PDF
    Root mean square height of rough surface determined by measuring correlation between two scattered radar waves at different frequencies as function of frequency separatio

    Scattering from surfaces with different roughness scales, analysis and interpretation

    Get PDF
    Statistical analysis and physical interpretation of scattering from surfaces with different roughness scale

    Theoretical curves of backscattering cross sections of rough surfaces for several polarization states using two statistical models

    Get PDF
    Theoretical curves of backscattering cross sections of rough surfaces for polarization states using statistical model

    A more exact theory of backscattering from statistically rough surfaces

    Get PDF
    Physical optics and other approximations examined for improving and extending theory of electromagnetic backscattering from rough surface

    Two experiments yielding lunar surface information employing polarized radar waves

    Get PDF
    Polarized radar waves used for determining local statistical electromagnetic backscattering properties of lunar or other planetary surfac

    Summary of concepts and transformations commonly used in the matrix description of polarized waves

    Get PDF
    Concepts and transformations commonly used in matrix description of polarized wave

    Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes

    Get PDF
    We examine the horizontal wavenumber spectra of horizontal velocity and potential temperature collected by aircraft above the Pacific Ocean to determine whether gravity waves, quasi-two-dimensional (Q-2-D) turbulence, or vortical modes dominate atmospheric fluctuations at scale sizes of 1–100 km and altitudes of 2–12 km. We conclude from the study of Doppler-shifting effects that Q-2-D turbulence and/or vortical modes are more prevalent than gravity waves over the ocean, except in the equatorial zone. The results are consistent with recent numerical simulations of Q-2-D turbulence, which show that the characteristic inverse cascade of energy is greatly facilitated by the presence of background rotation. Furthermore, a Stokes-parameter analysis reveals the general paucity of coherent wavelike motions, although specific cases of gravity-wave propagation are observed. Finally, a case study of a long flight segment displays a k⁻³ horizontal velocity variance spectrum at scales longer than about 100 km. A Stokes-parameter analysis indicates that these large-scale fluctuations were likely due to vortical modes rather than inertio-gravity waves.United States. National Aeronautics and Space Administration (Grant NAG1-1758)United States. National Aeronautics and Space Administration (Grant NAG1-1901

    Identifying Structural Variation in Haploid Microbial Genomes from Short-Read Resequencing Data Using Breseq

    Get PDF
    Mutations that alter chromosomal structure play critical roles in evolution and disease, including in the origin of new lifestyles and pathogenic traits in microbes. Large-scale rearrangements in genomes are often mediated by recombination events involving new or existing copies of mobile genetic elements, recently duplicated genes, or other repetitive sequences. Most current software programs for predicting structural variation from short-read DNA resequencing data are intended primarily for use on human genomes. They typically disregard information in reads mapping to repeat sequences, and significant post-processing and manual examination of their output is often required to rule out false-positive predictions and precisely describe mutational events. Results: We have implemented an algorithm for identifying structural variation from DNA resequencing data as part of the breseq computational pipeline for predicting mutations in haploid microbial genomes. Our method evaluates the support for new sequence junctions present in a clonal sample from split-read alignments to a reference genome, including matches to repeat sequences. Then, it uses a statistical model of read coverage evenness to accept or reject these predictions. Finally, breseq combines predictions of new junctions and deleted chromosomal regions to output biologically relevant descriptions of mutations and their effects on genes. We demonstrate the performance of breseq on simulated Escherichia coli genomes with deletions generating unique breakpoint sequences, new insertions of mobile genetic elements, and deletions mediated by mobile elements. Then, we reanalyze data from an E. coli K-12 mutation accumulation evolution experiment in which structural variation was not previously identified. Transposon insertions and large-scale chromosomal changes detected by breseq account for similar to 25% of spontaneous mutations in this strain. In all cases, we find that breseq is able to reliably predict structural variation with modest read-depth coverage of the reference genome (>40-fold). Conclusions: Using breseq to predict structural variation should be useful for studies of microbial epidemiology, experimental evolution, synthetic biology, and genetics when a reference genome for a closely related strain is available. In these cases, breseq can discover mutations that may be responsible for important or unintended changes in genomes that might otherwise go undetected.U.S. National Institutes of Health R00-GM087550U.S. National Science Foundation (NSF) DEB-0515729NSF BEACON Center for the Study of Evolution in Action DBI-0939454Cancer Prevention & Research Institute of Texas (CPRIT) RP130124University of Texas at Austin startup fundsUniversity of Texas at AustinCPRIT Cancer Research TraineeshipMolecular Bioscience

    Mapping Wind Direction with HF Radar

    Get PDF
    The article of record as published may be found at https://www.jstor.org/stable/43924806Office of Naval ResearchH.C. Graber acknowledges the sup- port by the Office of Naval Research through grant N00014-94-1-1016 (DUCK94)
    corecore