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NOTICES 

When Government drawings, specifications, o r  other data are used 
for any purpose other than in connection with a definitely related Gov- 
ernment procurement operation, the United States Government thereby 
incurs  no responsibility nor any obligation whatsoever,  and the fact  that 
the Government may have formulated, furnished, or  in any way supplied 
the said drawings, specifications, o r  other data, i s  not to be regarded  by 
implication o r  otherwise a s  in any manner licensing the holder o r  any 
other person o r  corporation, or  conveying any r igh ts  o r  permiss ion  t o  
manufacture, use,  o r  sell  any patented invention that may in any way be 
re la ted  thereto.  

The Government has the right to reproduce, use,  and distribute this 
repor t  for governmental purposes in accordance with the contract  under 
which the repor t  was produced. To  pro tec t  the propr ie ta ry  in te res t s  of 
the contractor and to avoid jeopardy of its obligations t o  the Government, 
the repor t  may not be re leased  for non-governmental use  such as might 
constitute general  publication without the express p r io r  consent of The 
Ohio State University Research  Foundation. 

Qualified reques te rs  may obtain copies of th i s  r epor t  f rom the 
Defense Documentation Center,  Cameron Station, A lewndr i a ,  Virginia. 
Department of Defense contractors must be  established for DDC se rv -  
i ce s ,  o r  have their  "need-to-know" certif ied by the cognizant mili tary 
agency of their  project  o r  contract .  
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ABSTRACT 

An experiment  i s  descr ibed which can be used to de te rmine  the 
mean squa re  height of a rough surface in t e r m s  of the cor re la t ion  
between two backscat tered waves at different f requencies  a s  a function 
of frequency separation. This  scheme i s  analyzed both for  rough planar  
su r faces  and rough spher ica l  surfaces  ( e .  g. , planetary su r faces ) .  Thus 
far, no experiment  involving radar  h a s  been suggested which can 
m e a s u r e  the r m s  surface roughness height; only the r m s  su r face  slope 
can  be est imated f r o m  rada r  measurements .  
a continuous r ada r  c a r r i e r  is  amplitude modulated by a low frequency 
signal and the correlat ion between the two sidebands i s  measured  a s  
a function of the modulating frequency. In the analysis ,  the backscat-  
ter ing c r o s s  section of a l a rge  rough sphere i s  derived also. 

The scheme is simple: 

The ma te r i a l  for  this repor t  was  used a s  Chapter IV of a 
d i sser ta t ion  by the author entitled "A More Exact  Theory for  Scat-  
t e r ing  of Electromagnet ic  Wave s f rom Statist ically Rough Surfaces" . 
This  accounts for  the discontinuities in page numbering. 
equations r e f e r r e d  to h e r e  having numbers  before 4. 1 may be found 
e i the r  in the d isser ta t ion  o r  in Report 1388-18. 

Any 
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CHAPTER IV 
AN EXPERIMENT YIELDING THE MEAN SQUARE 

HEIGHT, ut, OF A ROUGH SURFACE 

A. A Plana r  Rough Surface 

1. Complex cor re la t ion  coef- 
ficient of sca t te red  fields 
a t  two f reauencies  

It has  been shown in the preceding pa r t  that  the predicted back- 

sca t te red  power f r o m  a planar rough surface (o r i en ted  a s  in Fig .  5) 

i s  a function only of the mean square su r face  slope, Sz, a s  a rough- 

n e s s  pa rame te r  of the sur face  when the Gaussian and Besse l  J P D F  

models  a r e  used  in  conjunction with the Gaussian c l a s s  of correlat ion 

coefficients.  F u r t h e r m o r e ,  a s  discussed previously,  this mean 

squa re  slope which i s  visible on the surface a t  a cer ta in  wavelength 

i s  a function of wavelength and increases  a s  the wavelength decreases .  

The  fact  that backscat tered power measurements  can yield no infor- 

mat ion about the mean square height of the surface roughness, u2, i s  

somewhat discouraging. Therefore ,  it would be most  desirable  to be 

ab le  to find this mean square  height pa rame te r t  uz, f o r  a n  unknown 

rough surface by r a d a r  measurements .  

157 I 
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There a r e  two main reasons  why the mean square height, r2, is  

b OU g h t . 

< ij  Mean square sur iace  height u Z y  along with mean sq\Ial-r s u r -  

f ace  slope 5 both yield a quite completv picture  of the type of ruugl’ 

sur face  under study. 

l e s s  in  obtaining a n  idea of the roughness. 

2 

Ei ther  pa rame te r  alone i s  relatively mc.aninF;- 

( i i )  Mean square su r face  height u2, unlike mean square sur- 

face slope, is  for  a l l  p rac t ica l  purposes  independent of the examin- 

ing wavelength; the effect  of the addition of the height variation of the 

sma l l e r  scale sur face  s t ruc tu res ,  visible a t  decreased  wavelt,ngths, 

on the overall  surface mean square  height is very  sniall.  The mean 

square height of the surface r ema ins  essent ia l ly  the mean  square 

height of the l a rges t  scale  s t ructure .  

I t  was mentioned in connection with equation ( 2. 38 ) that such a 

genera l  method of determination of mean  square  height f rom stat is t ical  

propert ies  of the sca t te red  waves tilone r equ i r e s  that wavtilength of 

the measuring waves be both higher and lower (genc,rally i n  the s a m e  

o rde r  of magnitude) than the expected r m s  height, u y  of the sur face .  

This  requiremc>nt poses  two difficulties. 

( i )  Whc:n wavelength i b  of the same  o rde r  of magnitude a s  the 

r m s  s u r i a c c ,  height, the applicability of the physical  optics approxi- 

mation i s  clu(:stionable. 

mation, t h c  in tegral  equation f o r  the sca t t e red  fickld a p p e a r s  insoluble. 

Without the use of the physical optics appi-oxi- 
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when one wishes to find a closed, genera l  fo rm of the solution in t e r m s  

of the var ious  s ta t is t ical  parameters .  

( i i )  Measurement  of planetary sur faces  with wavelengths of the 

o r d e r  of magnitude of expected surface heights i s  near ly  impossible  a s  

f a r  a s  the instrumentation i s  concerned due to the low antexma gains a t  

t 
l a r g e r  wavelength. 

Due to the above difficulties of obtaining measurements  f r o m  the 

sur faces  at such low frequencies,  the following experiment has  been 

suggested. 

quencies,  f l  and f,; keep the two frequencies both high enough ( i n  the 

Illuminate the surface with two waves a t  two different f r e -  

r a d a r  range)  so  that measurement  i s  convenient and s o  that the physical 

optics approximation applies f o r  a t  l ea s t  the l a rges t  sca le  surface 

roughness.  Then v a r y  the frequency separat ion,  Llf = f l  - fZ,  and 

m e a s u r e  the correlat ion between the signals a t  the two f requencies ,  

f l  and fz ,  fo r  a n  ensemble of such rough surfaces .  ( I n  measurement  

of cor re la t ion  both amplitude and phase of the two signals w i l l  be 

preserved .  ) At very  sma l l  frequency separation, it might be felt 

that the cor re la t ion  should be nearly per fec t  (i .  e. , unity). However, 

a s  frequency separat ion Af increases  to  the point where "separat ion 

L 
wavelength, ' '  i. e. , A ,  =- becomes of the same o rde r  of magnitude 

Af 

a s  sur face  heights,  o r  u, then the cor re la t ion  should intuitively begin 

to decrease .  Thus,  the separation wavelength, A , ,  a t  which correlat ion 

I 
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begins to dec rease  should provide 3ome measure  of rms sur face  rough- 

ness  height, (r. 

Such a n  experiment  h a s  the advantages of using convenient r ada r  

frequencies a t  \vhich physical optics may be applied. The frequency 

separation, Af, can be produced by simply amplitude modulating the 

r a d a r  c a r r i e r ;  the correlat ion between the two returning may then be 

measured.  

The analysis  and theoret ical  prediction for  the correlat ion coef- , 

ficient will now be undertaken employing the Gauss ian  and Besse l  

J P D F  stat is t ical  models.  The analysis  will  be made  for  backscattering 

f r o m  a perfectly conducting sur face  at f i rs t ,  but the resu l t s  will apply 

equally well to a non-perfectly conducting surface,  since the integral  

to be evaluated in both case5  h a s  been shown to be the same.  

wave numbers  of the two frequencies  a r e  kl = -  - 

k t = - - -  - ; therefore  A f  = kl -k2 = - - - - . The covariance 

between two backscat tered complex waves f r o m  a sur face  at these 

The 

2lT 2lTfl 
A 1  b 

and - 

2 r A f  2 7 ~  21T 2lTf2 

C A S  

two frequencies has  been der ived in  equation ( 2 .  2b) .  It i s  repeated 

h e r e ,  neglecting the second t e r m  of the integrand which i s  z e r o  f o r  

ve ry  rough sur faces .  
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a, 
I .  

p J o (  2kl s in8p)  M c c , (  j2kl  scc  rS, - j2k2 5ec 8;p)  d p  

0 

a. Gaussian J P D F  

When the Gaussian J P D F  statist ical  model  i s  employed, the 

joint  charac te r i s t ic  function is Mi<,  ( j 2 k l  sec  e, -j2k2 sec  8 ;  p )  = 

e 
2 -$[ 4k l  sec2 8u2 - 8 k l  k2secz 8u2 R (  p )  + 4ki sec’ 8u2] 

Upon re -ar ranging ,  this becomes 

( 4. 2) Mc51 ( j2k l  sec  0, -j2kz sec 8;p) = e -2u2 Ak2 sec’ 8 

-4u2k1 kzsecZ 8 ( 1-R( p )  ) : e  

The first factor  i s  independent of p and can  be removed f rom the 

integrand. The second factor  is a lmost  identical  to  the previous 

2’ joint  cha rac t e r i s t i c  function a t  a single frequency except that k 

is replaced by kl k2. 

only the f i r s t  two t e r m s  o€ the se r i e s  for  R( p )  a r e  significant 

because u kl kz i s  very  large. 

By the same argument  a s  w a s  used before, 

2 Thus the in tegra l  becomes 

I 



162 

'L,LyHi1 HiZ cosze  
Ak s in  OLy 

jAkR 
kl k2e 

(4. 3 )  Cov[ H$H;" ] = 
2tr R: 

/ 

for the Gaussian c las  s 
cor  relation coefficient Xe - 2 0 - ~ A k ~ s e c ~ 0 ~  l o  

f o r  the exponential c l a s s  
cor re la t ion  coefficient . 

The f ac to r  which contains the information sought h e r e  is  
Af2 

-8rr'sec 0- = -8rrZsec28u2 c" 2 m-2 
e e ; it i s  indepen- -2u2Akzsecz8 - - e 

dent of the f o r m  of the sur face  correlat ion coefficient chosen. This 

factor  shows that a s  Ak inc reases ,  the covariance dec reases  accord-  

, the covariance has  fallen 
1 

ingly. Theoretically,  a t  Ak = \12 u sec 8 
1 
e 

to - of its initial value a t  Ak = 0. 

If the Gaussian c l a s s  cor re la t ion  coefficient i s  chosen to model 

the surface,  the integral  may be evaluated and the result ing covariance 

is: 

(4. 4) 

-4 !% 
JAkRo sin( Ak sin OLy) s kZ 

e ( ( L k  s in  OLy) 
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The cor re la t ion  between the sca t t e red  fields a t  the two frequen- 

c i e s  i s  defined a s  follows: 

where  the var iance of the scat tered field a t  a single fr  quenc 

Var[ H r ]  is obtained f r o m  the covariance by setting k2 = kl and Ak = 0. 

, denot 

Thus the correlat ion,  determined in this  manner ,  becomes 

sin(Ak sin 8 Ly) 

( Ak sin 8 Ly) 

kl jAkRo 
(4. 5) Cor[HfH:*] =c e 

If measu remen t s  a r e  made at r ada r  frequencies and frequency 

separa t ion  o r  modulation frequency i s  well below these r a d a r  f r e -  

quencies ,  then Ak << kl kZ , 

exponential fac tor  containing Bk is  essent ia l ly  always unity. 

n o r m a l  incidence, 8 = 0, and the diffraction pat tern factor  disappears;  

i f  such  i s  the case ,  the correlat ion becomes 

< <  1, so that the 

At  

k 
2, 1 , and - 

k2 - kZ 

k2 

- 2uz Ak2 
[ e  1 s s*  j AkR, 

(4.6) Cor[HIHz 1 = e 

Thus the exponential in  brackets ,  upon which the magnitude of 

the co r re l a t ion  depends, can  be used to determine the mean square 

I 
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height, u’, of the surface when the correlat ion has  been determined for  

var ious frequency separat ions , Ak. 

b. Bessel  J P D F  

When the Besse l  J P D F  stat is t ical  model i s  employed, the joint 

charac te r i s t ic  function given in equation ( 3 .  5d) i s  used, where 

u = -2kl sec 8and  v = +2k2  sec 8 ;  upon substitution of this joint 

charac te r i s t ic  function into (4. 1)  , the integration i s  performed and 

the resul t  i s  simplified ( t h e  detai ls  a r e  given in Appendix D) .  The 

covariance i s  

The correlat ion i s  found in the s a m e  manner  a s  before,  and i s  

Ak sin 8 Lv) 
( A k  sin 8 L  ) Y 

1 

s s >k 
( 4 . 8 )  Cov[I11H2 1 

At norma l  incidence, the above equation reduces to 
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As can  be seen  by comparison of (4. 9 )  with (4. 6 ) ,  the expres-  

s ions in brackets  a r e  quite s imilar  in f o r m  a s  functions of uzAkz, 

especial ly  where  the magnitude of the cor re la t ion  i s  betueen 0,. 5 and 

unity. This  is  shown graphically in Fig.  21. This  indicates that the 

s ta t i s t ica l  model h a s  very little to do with the shape of the correlat ion 

cu rve  in this region a s  a function of Ak. 

To predict  the mean squre height of the surface roughness, one 

would m e a s u r e  the correlat ion between the two reflected signals; when 

it f e l l  t o  about 0. 5 1  h e  would use  the cu rves  to  find that 

0. 6 6 5  o r  IJ - - , depending upon which 0- - $zzr5 
Gaussian-  Ak Besse l  Ak 

resul t ing rms height due to the choice of a par t icu lar  s ta t is t ical  model 

in  th i s  c a s e  ( w h e r e  cor re la t ion  = 0. 5) i s  about 6. 2 70 , which i s  s u r -  

pr is ingly low. If, fo r  example,  one could determine the rms height 

of the lunar  surface roughness to  within 6. 270, one would value his  

information quite highly. 

dictions f o r  rms su r face  height should be quite insensit ive to  the f o r m  

of the s ta t i s t ica l  model chosen. 

This  se rves  to  i l lustrate  that  such p re -  

Another u s e  of such a correlat ion between the two signals 

should be pointed out. I t  should be noted that the difference between 

the two cor re la t ion  curves  for la rger  values of frequency separation, 

A f ,  becomes m o r e  pronounced, especially i f  the curves  had been 

plotted in decibels.  The shape of each curve,  a s  shown previously, 
I 
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depends solely upon the f o r m  of the J P D F  chosen to r ep resen t  the s u r -  

face and i s  independent of the surface correlat ion coefficient. 

the curve f o r  the Gaussian J P D F  model i s  valid equally for  the 

Hence 

Gaussian c l a s s  cor re la t ion  coefficient a s  well a s  the exponential c l a s s  

cor re la t ion  coefficient. This  fact  suggests the u s e  of this experiment 

to obtain information about the J P D F  of the rough surface.  If, for 

example,  the measu red  curve for  correlat ion i s  c lose r  to the predict-  

ed curve  for the Gaussian J P D F  model, one might a s s u m e  that the t rue  

sur face  J P D F  i s  c lose  to Gaussian. With more  investigation, i t  should 

be possible  to  determine a lmost  uniquely the t r u e  sur face  J P D F  f rom 

such correlat ion measurements ,  provided accura te  enough measu re -  

men t s  can  be made a t  higher  values of Af. 

2. A planar rough sur face-  
r e a l  measurable  correlat ion 
coefficient of sca t te red  fields 
at two f requencies  

The complex cor re la t ion  coefficient discussed in the preceding 

In a r e a l  subsect ion suffers  f r o m  i t s  lack of physical  measurabili ty.  

world,  how does one measure  a so-called complex field ? All fields 

a r e  r e a l  quantit ies and antennas relate  r e a l  t ime varying voltages a t  

the antenna te rmina ls  to the r e a l  t ime varying field vec tors  producing 

t h e s e  voltages. Hence, which real  voltage quantit ies does one 

m e a s u r e  in  o r d e r  to  obtain a functional dependence upon frequency 

separa t ion ,  Af,  such a s  that in brackets in ( 4. 6)  o r  ( 4. 9 )  ? Various 

I 
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pe r sons  have at tempted to m e a s u r e  a cor re la t ion  between the deniodu- 

lated amplitudes of tTxo signals a t  separa te  f requencies  reflected f rom 

the iunar surface ( Pettengill[  LO] ) ;  such a correlat ion i s  proportional 

to  the covariance < I H: 1 I H: I >, and not to <H:H:"' > . 

correlat ion cu rves  do not contain the s a m e  information in the des i r ed  

fo rm,  and should not be compared  with the cu rves  of F i g .  21. 

Thus such 

A typical sys t em is shown in Fig.  22 which can  yield a pertinent 

correlat ion function. The a r b i t r a r y  angle (Y ( considered constant with 

r e spec t  to t ime)  r ep resen t s  all the accumulative phase shift difference 

between the two channels introduced by the en t i r e  system. The magni- 

tude voltages v1 and v2 a r e  proportional to  I Hf I and 1 H;/ respectively.  

MIX MIX 

FILTER FILTER 

~ ~ v ~ c o s ( + ~ - + ~ t 2 A w t - a )  

v2cos ( ( y r A w )  t + +2+a 
FILTER 

MIX 

v2 cos (-Aw t + +$ a 1 

Fig .  22--System providing s ignals  yielding correlat ion 
between sca t te red  fields a t  two frequencies .  
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The following relationships then hold t rue;  f r o m  consideration of ( 4 .  6 )  

(cons ider ing  f i r s t  the case  of the perfectly conducting surface)  

( 4. loa) 

(4. lob)  

where  

v1 cos((wo + Au) t + + 1 )  = Re[HP( PI)]  

v2cos( ( wo - Aw) t + $2) = Re[ H:( P' )  1 

These  equations a r e  valid to within a constant phase angle which 

is removed f r o m  each for  convenience. Hence, the signal at the out- 

put i s  given by 

I 



This  equation can be rewritten in exponential form. 

J J J J  

D1 

- j (  AkR, - 0 )  
kl k, I dl I I d z  I e + 

8rr2 RL 

Upon averaging ( 2 .  40b) ,  one a r r i v e s  at the resul t ,  

00 

- j (  AkR,- 
p J o (  2k l  s in  8p)  MScI( -j2kl sec  0, j2kzsec 0; p)  dp} e 

L’ 

0 

R c t  it has  been shown previously that the joint charac te r i s t ic  

function i s  a r ea l  function which i s  symmcxtric, such that 

M551(  j u ,  - j v ;  p )  = M , Y ~ I (  - ju ,  jv; p)  = M L L I  ( j v ,  - ju;  p) . 
J, e,- 

Therefore ,  the 
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integrals  in ( 4 .  l l c )  a r e  identical and a r e  pure r ea l  numbers;  ( 4 .  l l c )  

can  be expressed  a s  

cos28:F cos(  AkRo- C Y )  X 
sin( Ak s in  8Ly) 

( Ak sin 8 L,y) 

1 pJo(  2kl s inep )  M cr_ I (  j2kl sec 0 ,  -j2kzsec 8;p) dp . 
0 

jAkRo This  equation i s  identical  in f o r m  to ( 4 .  1 )  , except that e 

is replaced by cos( AkRo- a ) ;  hence the analysis  of the preceding sub- 

s e c t J o n  ZFplies direct ly  in this section when this substitution i s  made. 

Thus  equations (4. 6) and (4. 9)  for the two s ta t is t ical  models become 

-2uZAkZ 1 
( 4. 12a) Cov[ VI V ~ C O S  ( $ 1  - + Z - Q ]  = cos(AkRo- C Y )  [e 

for the Gaussian J P D F ,  

for  the Besse l  J P D F  , 

The appearance of the factors  C O S (  AkRo- CY) in  the correlat ion 

function p resen t s  a complication; since AkRo > >  Aku (i .  e. , Ro for  

l una r  measurements  is the distance to the moon) , (,4. 12a) and ( 4 .  12b) 

t h e r e f o r e  appear  a s  cosine waves modulated by the factors  in brackets  

a s  functions of Ak. Hence for  a d i sc re t e  pract ical  number of 
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' 

measurements  ( e .  g. , a t  ten different values of Ak) , (4 .  12a) and 

b 

( 4 .  12b) would yield l i t t le  information, since the correlat ion of each 

. 

measurement  might be positive o r  negative with l imits  equal to the 

2 A w t  

factor in brackets.  Only the factor  in brackets  is of interest .  

The annoying cosine factor can be eliminated by introducting a 

third channel a t  A in F i g .  2 2  caused by shifting the phase a t  A by 90".  

This  scheme is shown in F i g .  23. Upon making a second average 

measurement  of the output, one has fo r  the correlat ion function 

1 - 2uzAkz ( 4. 13a) Cov[ VI  vz s in  ( 4 1  -&-a) 1 = sin( AkRo-a) [ e 

for the Gaussian J P D F  

for  the Besse l  JPDF.  

Fig. 23--Modification of sys t em in Fig. 2 2  providing 
quadrature  component of cor re la t ion  coefficient. 



1 7 3  

Thus i f  one obtains the averages  in  equations ( 4 .  1 2 )  and ( 4 .  1 3 ) ,  

squares  them, adds,  and takes the square root,  the sinusoidal factors  

disappear  and only the quantities in brackets  remain.  

The purpose of this subsection i s  to show how measurements  can  

be made yielding a physically significant cor re la t ion  function which con- 

ta ins  easi ly  access ib le  information about r m s  surface height, u, a s  a 

function of frequency separation, Af. I t  i s  seen  that the proper  phase 

d i f fe rences  ( cos ( $ 1  - 9 Z - c ~ )  or  sin( 91 -42-a)  ) must  be included in the 

averaging along with the signal magnitudes v1 and v2. 

B. A Spherical  Rough Surface 

1. Complex correlat ion coef- 
f icient of scztter2d fieids 

a t  two frequencies  

The r e su l t s  of the preceding two subsections cannot be applied 

d i rec t ly  to the lunar  surface ( o r  other planetary sur faces)  because 

when the incident r ada r  wave i s  CW,  the effective a r e a  illuminated 

i s  hemispher ic  instead of planar. One might intuitively feel  that 

s ince  the r e tu rn  f r o m  the forward cap of the moon ' s  surface (which 

can  be considered planar)  i s  by far  the s t rongest ,  then the cor re la t ion  

between the signals at two frequencies sca t te red  f r o m  i t s  en t i re  

:: It should be noted that at point B of F ig .  2 2 ,  one can  a l so  obtain 
v1 v2 cos(  +1 + 92 + cy ) ; the average of this  quantity does not resul t  in 
the des i r ed  correlat ion,  since this s u m  of the phase angles resu l t s  
in joint  charac te r i s t ic  functions of the f o r m  
Mt;t;i( j2kl sec  8 ,  j2k2 sec 8 ;  p )  , which a r e  negligibly smal l  for  
2klu sec  8 > > 1, a s  compared with the charac te r i s t ic  function 
M ~ t ; i (  j2kl sec  0 ,  -jZkz sec  0; p )  obtained f r o m  the phase difference 
c o s  (91- +2 - a ) .  I 
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surface should exhibit a functional dependence upon frequency sepa ra -  

tion, A f ,  and upon rrns surface height, U, s imi la r  to that derived for  

the planar sur faces  in ( 4. 6)  and ( 4. 9 ) .  

section that such i s  indeed the case ;  the correlat ion for  the Gaussian 

J P D F  model has  identically the functional relationship of (4. 6 ) .  

It w i l l  be shown in this 

The resu l t s  of this subsection a r e  i n  contradiction with a p re -  

dicted correlat ion function of scat tered waves f r o m  an  hemispheric  

su r face  at  two different frequencies ( b u t  a t  the s a m e  instant of t ime)  

done by Hagfors[ 21 . Hagfors '  resu l t  does not depend upon r m s  s u r -  

face height, and therefore  cannot be used to predict  this pa rame te r  

of a rough spherical  surface. Hagfors '  l o s s  of all dependency upon 

rms surface height i s  believed to be due to  h is  approximations and 

mathematical  reduction of the original integral. 

For  simplicity,  only the Gaussian J P D F  model will be analyzed 

h e r e  when used with the Gaussian c l a s s  cor re la t ion  coefficients; that  

the resul ts  may be extended by induction to  the other  J P D F  model will 

be assumed. The su r face  i s  considered perfectly conducting, although 

this res t r ic t ion may be easily removed l a t e r  in  the c a s e s  of c i r cu la r  

polarization by multiplying by the appropr ia te  f ac to r s  involving the 

reflection coefficients. 

spherical  with a mean rad ius  A and with a n  actual  radial  distance to 

any point on the surface f rom the cen te r  of the sphere (chosen  a s  the 

coordinate origin a l so)  given by r = A + h ,  where  h i s  the random 

The mean su r face  is considered perfect ly  
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var iab le  represent ing surface roughness; h h a s  a Gauss ian  J P D F ,  h a s  

z e r o  mean,  and it is  assumed that I hl  < < A ,  i. e . ,  that surface rough- 

nes s  i s  much sma l l e r  in height than the rad ius  of the moon ( see  F i g .  

24 ) .  The sca t te red  field i s  given in this c a s e  by equation ( 2 .  24)  of 

the f i r s t  par t ;  5 in this ca se ,  being the height of the surface in the z 

direct ion,  i s  given by 51 = r cos  6 =  ( A  + h) cos 8 .  Therefore ,  the 

conjugate product of the complex scat tered f ie lds  a t  two frequencies 

XI  

F i g .  24- -Rough spherical  scattering surface.  
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The domain D1 of integration in this case  i s  the c i rcu lar  a r e a  in 

2 the z1 = 0 plane defined by x$ + yf - < A . 

convenient to change the var iables  of integration to the spherical  angles 

8 ,  c p ,  e ' ,  and $ '  defined by the following equations: 

At this point, however, i t  i s  

( 4 .  15) x1 = r sin 8 c o s  9 , 

y1 = r sin 8 sin + , where r = A  + h(  e , $ )  . 

x1 = r ' sin 8 '  cos  + I ,  

yi  = r 1 s in  8 1  sin 91, 

1 

where  r ' =  A + h ' (  e ' , + ' )  . 

In  this c a s e ,  h i s  considered a function of 0 and 4; therefore ,  the 

en t i re  exponential in  the integrand i s  a l ready  a function of 8,  9, e ' ,  and 

9'. 

t e r m s  of the new variables.  

and r '  a r e  considered essent ia l ly  constant a t  A, and I h i < <  A since 

the Jacobian occurs  a s  a magnitude fac tor  in  the integrand. 

Jacobian is then 

One must  find the Jacobian in  o r d e r  to  complete the integrand in 

In the determinat ion of the Jacobian, r 

The 



J =  

ax, 
a+ 

1 7 7  

4 
= A sin 0 c o s  8 sin O'cos 0 '  

The domain of integration, D2, i s  how 0 < $ , + I  < 2 ~ r ,  - 
rr 

0 < 0 , 8 '  < . Therefore  the integral  ( 2 .  4 5 )  becomes - - 

-j2[ kl ( A + h )  cos e-k,( A+ h ' )  C O S  el]  ssss e 

Upon averaging the above expression, one obtains the covariance 

of the sca t te red  fields in  t e r m s  of the joint charac te r i s t ic  function of 

the random variables  h and h' . 
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-j2A[ kl cos  0-k, cos  0'1 e s i n 0 c o s  0 s i n 8 '  c o s 0 '  dW+ do' d9 '  . 

In  this ca se  the distance,  p ,  between two points on the surface of 

a sphere  a t  ( e , + )  and ( e l , + ' ) ,  mus t  be determined in t e r m s  of the 

angular  coordinates of the two points. Since it i s  the length of an a r c  

011 the spherical  SUrface, i t  i s  given by p = A v ,  where v i s  the angular 

separation ( i n  radians)  between the two points. 

angle,  V ,  is determined by the dot product of the two unit vec tors  

pointing from the origin towards the points ( e , + )  and ( e ' ,  + I ) ;  this i s  

The cosine of this 

'I 

I 
A A A 

C O S  v = ( sin 8 c o s  + x1 + s in  0 sin + y1 + cos 8 2 1 )  * 

/ A / A  (4. 17) ( s i n  0 ; c o s  +' Q1 + sin 0 sin +' y1 + cos 0 ~ 1 )  

t I 
. ' .  c o s  v = sin ~3 sin 8 cos (+-+ ' )  + c o s  e c o s  8 

It is a s sumed  h e r e  that since sur face  roughness is much 

sma l l e r  in  scale  than the rad ius  of the sphere ,  then the correlat ion 

1e;igtIi 0: the surface roughness height, h,  i s  much sma l l e r  than the 

rzl -u.- <ilso. Thus the joint cha rac t e r i s t i c  function becomes vanish- 

i n g l y  sriiall whcn the angle v i s  s t i l l  very  small. In this region w.herc 
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the joint charac te r i s t ic  function i s  non-zero and the angular separation 

between the two points i s  very  small ,  the cosine function can be approxi- 

mated by the f i r s t  two t e r m s  of i t s  s e r i e s ,  i. e. , cos v = 1 - - ; thus v2 

can  be wri t ten 

V 2  

2 

(4. 18) v2 = 2[ 1-COS V I  = 2[ 1 - sin e sin e 1  c o ~ ( 9 - 9 ~ )  - C O S  e C O S  el] . 

The Gaussian joint charac te r i s t ic  function in this  ca se  i s  

+ k; COs28'] a2 
-k2[ g1 cos28-  2kl k, C O S  8 C O S  8 '  e 

= e  
A2v2 
a2 
- 

' -4u2kl k2 cos Bcos 8 '  (1-e 1 9 -2( 1, 
--L'J . I,L 8-  kz cos e 1 

= e  - c  

It should be noted that the first exponential i s  always l e s s  than 

uzi ty  because the exponent i s  always negative; the second exponential 

becomes  vanishingly smal l  for  A v2/a2 
2 st i l l  very  c lose  to  z e r o  because 

the quantity 4u2kl k2 cos  8 cos  e 1  i s  very  la rge  everywhere ( except a t  

o r  ve ry  near  grazing incidence where 8 o r  €I1 a 9 0 " ) .  

ignoring the effect  of that  portion of the surface very  near  grazing 

Hence, when 

incidence,  the correlat ion coefficient can  be represented  by the f i r s t  

-A2v2/a2 ?. AZv2/,2 = two t e r m s  of i t s  s e r i e s  expansion, 

2A2 - [ 1 - sin 8 s in  8 '  cos(  9-91) - cos  Bcos 011 . 
a2 

s o  that 1 - e - 

Make the change of 

va r i ab le s  y = + - + l .  Then the covariance becomes 



. e-j2A( kl  C O S  8 -  k2cos  e ' )  

d A 2  
y = 2 l r + + '  

Y = + '  

-8k1 k2 7 sin 8 C O S  e sin 8 '  C O S  e l  C O S  y I "[S e 

X d+] sin 8 cos 8 sin 8 '  cos 8 '  de de '  . 

When one studies the integral  included in  the square bracke ts ,  

one notices that the integrand i s  periodic,  and since i t  i s  to be inte- 

grated over one period ( f r o m  + I  to  9 '  + 2 r ) ,  the value of the integral  

i s  constant regard less  of the initial value of 9'; hence the l imi t s  of 

the integral  may be replaced by 0 and 2 r  and the value of the in tegra l  

in  square brackets  wi l l  remain  unchanged. 

+ '  may be made since the integrand i s  independent of + I .  

in square brackets  may be evaluated f r o m  the tables;  

Then the integral  over  

The in tegra l  

2lT 
r2A2 (' ,-8kl k 2 7 s i n  8 cos  e sin 81 cos  0 1  cos  y dy = 

J 
0 
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where Io is the modified Besse l  function of the f i r s t  kind. 

may now be wri t ten 

The integral  

u2A2 
-2u2( kl cos  8-k2cos e ’ )  2-8k1 k 2 7  cos e c o s  e l (  ecos e l )  

e, e l = o  

s in  8 C O S  8 sin 8’ C O S  8 ’  de de’ . 

In the evaluation of the remaining double integral ,  i t  appears  that 

.I .“----+TTf -*-r”..”l- w,@i’nrric -*--iil._.Li. nnr2. ’ : ~ r l r , r - - - . u i - - a t i o n s  offer t h e  sir,-,?cst course. The = = Y .... ’ ‘  --r 1- 

uZA2 constant K E 8klk2 , -  is ve ry  large a t  r ada r  frequencies;  for 
a 

instance,  a t  wavelengths A 1  - A, 2 10 c m ,  when applied to the lunar  

su r face ,  this constant i s  of the order  of magnitude io”.  

2, 

Using this 

f a c t ,  the modified Besse l  function will  be wri t ten in  t e r m s  of its l a rge  

a rgumen t  expansion where only the f i r s t  t e r m  i s  retained; this i s  quite 

val id  where the argument  i s  g rea te r  than 10 in value. 

the a rgument  K s in  0 cos  8 sin 8’  cos  0’  i s  g rea te r  than 10 over the 

A s  can  be seen,  

e n t i r e  range of Band B’except for the two tiny ranges 

The  e r r o r  introduced f r o m  these two infinitesimal ranges of 8and  8’  

when using the la rge  argument  expansion for  Io i s  hence negligibly 
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small. Using this approximation, Io can be  wri t ten 

1 Io( K s inecos  BsinB'cos 0 ' )  2 
\jLrKsinOcos t f s in0 ' cos t ) '  

K sin Bcos Bsin 8 '  C O S  0 '  e 

Now this  portion of the integrand can be combined with another 

exponential portion a l so  containing the factor K; s ines  will  be  v, r i t tcn 

i n  t e r m s  of cosines .  

Let f E 1 - c o s  & o s  8 '  - \Il-cos29 . Then seve ra l  fac ts  

should be noted about f. 

( i )  

( i i )  

f = 0 where cos  8 o r  cos  B 1 =  0.  

f is always e i ther  z e r o  o r  posit ive f o r  any 8 , O '  between 

0 "  and 90" .  

genera l ,  when f # O ,  the exponential is v e r y  small due to the l a r g e  

constant K. 

This  means  that  the exponent is always negative and in 

( iii) f = 0 where  cos  8 = c o s  8' .  Hence the  exponential h a s  

i ts  largcxst valuc when c o s  8 is very  c lose  to  cos  8 '  ( i .  e. , when the 

two points on t h e  s u r f a c e  a r e  v e r y  c lose  t o  each o the r ) .  This s u g -  

ges t s  making a change of va r i ab le s  such that c o s  8 '  = cos  8 - T. 
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Thus f becomes 

f = 1-COS e( C O S  8-7) - 4- \I( 1-COS28) + 2 C O S  8 T  - T2 . 

Again, i t  can  be seen  that when the latitude separat ion,  T, i s  zero ,  

f becomes ze ro ,  and this exponential factor  in the integrand has  i t s  

l a r g e s t  value. However, when T becomes different  f r o m  zero  but i s  

s t i l l  very  smal l ,  the integrand becomes vanishingly smal l  due to the 

v e r y  la rge  f ac to r  K and the positive value of f.  If one excludes again 

the regions of 8 discussed previously ve ry  close to 0 "  and very  close 

to  9 0 " ,  then (1-cos%) >> 1 2 ~ 0 ~ 8 ~ -  721 i n  the region where T i s  

sm-all Ftnoiigh so  that the integrand - does not vanish. 

the second square  root  in  f may be wri t ten 

In this region, 

Hence f can  be wri t ten 

f 2 l - C O S  e( C O S  e-T)  - (  l-COSz8) - C O S  8 T +  $ T z  = $ T z  . 

The factor  cos  B c o s  8 '  multiplying f can be wri t ten 

cos  0( cos  8 - T ) *  - cos2B since 1 T )  < <  cos 8 i n  the range of interest .  

Also,  the function kl cos 0- kzcos 8 '  may be wri t ten kl cos 8 - ( kl -Ak) 

( cos  e - T )  = Ak cos  8 + Tk2. Upon changing one var iable  of integration 

f r o m  81 to T, one finds that the upper and lower l imits  of the integral  

on T become cos Band cos  8-1 respectively. However, since the 

4 
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integrand becomes vanishingly smal l  f o r  T slightly g rea t e r  than z e r o ,  

these l imits may be replaced by -+ a .  Thus the integral  becomes 

~ = ~ / 2  ~ = a  

-2m2[ Ak cos e+ ~ k ~ ]  - e  - j2Akcos 8 s c  e 
e=o T =  -a 

sin Bcos e (  cos 8 - T) 
S 8 - T )  J1-C C O S  8 - T ) 2  

T 2  -K  c o s 2 8 F  - j 2 A k 2 ~  
X e  dT d e  

In this integral ,  the factor  cos  8 - ~ ,  where 

replaced by cos 8,  under the assumption that I T 

i t  occurs ,  may be 

< <  cos  8 in the 

non-vanishing range of interest .  Also,  in the f i r s t  experimental  

factor  of the integrand, i t  should be noted that since 2u2kz < <  K, 

then the effect of the factor  e -Kc's' e 7- in the integrand causes  

2 

7 2  

the integrand to vanish much fas te r  for increasing T than any affect 

- 2 U 2 [  Ak cos 8+ ~ k z ]  f o r  caused by  the f i r s t  exponential factor ,  e 

i n  this range near  zero;  hence, the f i r s t  f ac to r  i s  considered 

constant in this range of T a t  i t s  value for T = 0 ,  i. e. , 
2 

-2c2[ Ak cos e+ k Z ~ ]  2r . - 2 m z  Ak2 cos28 e - . Then the integral  becomes 



e=  0 

The second integral  in  braces  can be evaluated immediately 

f r o m  the tables:  

..I 
-00 

\1 K cos28 - 

Employing the definition of mean square  surface slope, 

4uz 
a 2  

s-2 =-  , the remaining integral  becomes 
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In the range of in te res t  of Ak, i. e. , where 0. 1 < Aku < 10, the 

quantity AAk is very  large; Therefore  the method of stationary phase 

c a n  be used to evaluate the remaining integral .  Since the integrand is  

a n  even function of 8, the integral  l imi t s  may be changed, viz. , 

0 - Tr/2 
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then f (  e )  = cos 9 has a saddle point a t  9 = 0; expanding about 9 = 0 gives 

9 2  for the f i r s t  two t e r m s  f (  e )  = cos 2 1 - 7 . The expression in square 

brackets  in the integrand i s  considered constant a t  8 =  0 according to 

this method, and the remaining in tegra l  becomes 

k l o o  
e -2u2 Ak2 - -L' kl  - ~2 e jAAk02 

Evaluating the remaining F r e s n e l  integral  and employing the fact  

that  !k % 1 for  - << 1, the covariance becomes 
kl - kl 

-1/s2 1 - 2 6  Ak2 1 e - r e  

It  should be noted that the above covariance,  being proportional 

to the signal strength of the two ref lected waves f r o m  the sur face ,  i s  

a function of - e '/"; th is  factor  i s  similar i n  f o r m  to that involved 

in the reflection f rom a rough planar s u r f a c e  when the Gaussian J P D F  

1 -  
S2 

model i s  used. 

The above f o r m  of the covariance a t  two different f requencies  

should be compared to Hagfors[  21 r e su l t ,  which i s  Cov( Hf,H;" ) * 

1 
l/S2 + jAAk 

, where S2 = 4hk /L2  = 4c2 /a2. H i s  r e su l t  i s  not a t  a l l  a 
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function of r m s  surface height alone, but depends only upon the pa rme-  

t e r s  r m s  sur face  slope, S, and the radius of the moon, A,  a s  a func- 

tion of frequency separat ion,  Ok. 

As shown in the preceding subsection, measurements  can be 

when the sys tems of F i g s .  22  and 2 3  a r e  employed. By squaring and 

adding these covariances and then taking the square  root, the sinusoidal 

fluctuations of the covariances with the d iameter  of the moon (depending 

upon 2AkA) and the distance to the moon (depending upon AkR,) can  

be removed. Thus the magnitude o r  envelope of the covariance of 

q i ~ . a t i o n  ! 4. 20) obtained in  this manner becomes 

One might note with d is t ress  that  the covariance of the sca t te red  

Ak, the f ie lds ,  as  expressed  in  the above equation, goes to infinity a s  

frequency separat ion,  goes toward zero.  

s ca t t e r ed  fields at Ak = O,( i. e. , a t  the same frequency) should give 

the sca t te red  power,  this would seemingly indicate that the sca t te red  

Since the covariance of the 

power i s  infinite. However, this apparent  discrepancy is easily 

explained: equation ( 2 .  51) was obtained f r o m  an asymptotic expansion 

where  the pa rame te r  2AAk was a s sumed  to be very large.  Therefore  

it i s  valid only in this region and cannot explain the behavior of the 
I 



188 

covariance function when A k  - 0  ( such that 2 A A k  i s  sma l l ) .  F o r  the 

lunar  surface, frequency separat ion,  Af need be only 1370 cycles per  

second in order  that  2 A A k =  100. 

The correlat ion coefficient of the scat tered fields a t  both f r e -  

quencies i s  found by dividing the covariance in (4. 21) by the square 

root of the var iance of each of the two scat tered components. In o r d e r  

to find the var iance,  one must  go back to equation (4. 18) and se t  

Ak = 0. Then the var iance becomes 

The function 1 - 9 (  x) i s  the complement of the e r r o r  function, 

@ (  x) , and i s  given by 

a, 

2 
1-+( x)  = - [ e-' dt  

F -  
X 

Hence, the cor re la t ion  coefficient of the backscat tered fields i s  

Since this is a t r u e  cor re la t ion  coeff ic ient  only where 2 A A k  

i s  Very la rge ,  then there  m u s t  exis t  another cor re la t ion  coeff ic ient  

f o r  2AAk smal l  such that Lim 
s s$  
Hz [ Cor (  ) ] = 1 ( i n  o rde r  that the 

A k - 0  
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definition of a correlat ion coefficient not be violated) .  However ,  ii 

one is  in te res ted  in  obtaining information about u, the r m s  surfacc 

height, frorn the cor re la t ion  coefficient of the sca t te red  fields,  he 

can employ (4. 23)  by restr ic t ing h is  range of Ak which he u s e s  for  

measurement  such that 2AAk i s  very l a rge  (Ak > 1000 cps in the 

case  of the moon).  

The functional dependency of the correlat ion upon the Farame-  

t e r s  u and Ak can be enhanced f o r  such la rge  AAk by multiplying the 

cor re la t ion  given in ( 2. 54) by the factor  4- thus one defines a 

new function 

The constant KS is not a function of u o r  Ak, but i s  only a function of 

S, the r m s  surface slope. Thus when (4. 24) is  plotted a f te r  the co r -  

re la t ion h a s  been determined and multiplied by JAak a s  a function 

of cr2AkZ, the curve  is identical  with that shown in F i g .  21. 

where  the experimentally obtained function P( Aku) falls  off to 2 i ts  

ini t ia l  value ( t h e  initial value still being where 2AAk i s  la rge ,  e. g. , 

a t  Af = 2000 c p s ) ,  one notes from the curve that 2~ AkZ = 0. 693, and 

thus  one can find u . 

By noting 

1 

2 

I 



There  a r e  a spec t s  of the preceding development which may be 

expanded and extended he re .  

( a )  One might suspect that since the analysis  of this subsection 

was  done only for  the model with the Gauss ian  J P D F  and Gaussian co r -  

relation coefficient, then possibly other  models will  give different 

resul ts .  In par t icu lar ,  it was  shown fo r  this s ta t is t ical  model  that 

one should multiply the cor re la t ion  coefficient of the backscat tered 

fields by { T k  in o rde r  to a r r i v e  a t  a function, P( uAk) , which v a r i e s  

in  the manner  predicted for  the cor re la t ion  coefficient of the fields 

. However,  i f  the f r o m  a rough planar  sur face ,  i. e. , a s  e - 2cz Akz 

su r face  J P D F  is not Gaussian,  does one s t i l l  multiply byiAQk to 

a r r i v e  at  a resu l t  functionally s imi l a r  to the cor re la t ion  coefficient 

for  the fields f r o m  a planar  sur face ,  o r  is the p rope r  function of AAk 

different f r o m  the square  root?  The answer  is that  multiplication by 

the factor (E i s  c o r r e c t  fo r  any s ta t i s t ica l  model  r ega rd le s s  of 

the f o r m  of the J P D F  so long a s  2AAk i s  la rge .  This  factor  \ j X k  

resu l t s  f rom application of the asymptotic method of s ta t ionary phase; 

application of this method is possible  because of the fac tor  in  the 

1 -2A[kl cos  0 -  k2 cos 0 1 = e - j  integrand e 2k T [ e  -j2AAk cos  8 

( s e e  equation 2. 4 7 ) .  This  fac tor  i s  independent of the f o r m  chosen 

for the j o i n t  charac te r i s t ic  function of the sur face  height, and i t  i s  

this exponential in brackets  which p e r m i t s  application of the s ta t ionary 

phase method; consequently,  the f ac to r  l / { x -  always a p p e a r s  in the 
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cor re la t ion  coefficient. H e n r e ,  one \vould expect that the, function 

P( aAk)  in the case  where  the surface has  the Besse l  J P D F  model 

would have the f o r m  

r 1 

This  function i s  plotted a s  a function of 6 A k 2  and shown in  the dotted 

curve  of Fig.  21. 

( b )  If one wishes to add a second o r d e r  correct ion to the co- 

var iance  function for  the scat tered field, one may approximate the 

flinction e in the integrand of ( 2 .  50) by e instead 

1 1 -v set% -F ( i+e2 )  

I -- ? 
-- G -jACk)@ 

of by e - l  ; th i s  r e su l t s  in a n  integrand in ( 2. 5Oaj  of e' 

. The integrand is then evaluated in the same  man-  .Ak€lz instead of eJ 

n e r  and the factor  1 / JAAk of eqaation ( 2. 51) i s  replaced by 
r..- 

1 /j$ -jAAk ; the resulting magnitude of the covariance function of 

( 2. 52)  then h a s  the factor  1 / 6% replaced by 1 / [($)'+ ( AAk) ']"' '. 
This  cor rec t ion  i s  necessary  where AAk i s  not la rge  with respec t  to 

s a m e  i n  both cases .  

( c )  The resu l t s  of this subsection have been derived for a 

per fec t ly  conducting surface;  however, they would differ f r o m  the 

result-s f o r  a non-perfectly conducting s u r f a c e  when c i r cu la r  polar i -  

z x t i 2 n  is employed ( and  one considered only the polarized backscat-  

t e r e d  component) only by the appearance of the factor ' 



1 9 2  I 

2 d I P,, ( 0 )  - p,(e) I in the integrand of ( 4 . 1 8 ) .  When the stationary 

phase method i s  applied, this factor i s  removed f rom the integrand 

and t reated a s  a constant with i ts  value a t  the saddle point 8 = 0; then 

this factor becomes I Fr - 1/&+ 1 I fo r  dielectr ic  surfaces .  
2 

A s imi l a r  r e su l t  i s  obtained for the power f rom (4. 22)  when 

one includes this f ac to r  in the integrand, The justification for r e -  

moving it f r o m  the integrand a s  a constant in that c a s e  (when the 

stationary phase method i s  not used) i s  that the function 

2 I p, , (  e)  - p,(8) I is near ly  constant a s  a function of 8 all the w a y  

out to about 70"  , a s  seen  f r o m  F i g .  7. Since the integrand 

- 9 secW 
e becomes vanishingly smal l  at 8 l a rge ,  this reflection 

1 

coefficient factor  i s  significant only in a neighborhood of 8 =  0 and 

is therefore  a constant in  this neighborhood. Hence this s ame  factor  

appears  in both the var iance  and covariance of the backscat tered 

f ie lds ,  and consequently cancels  out of the cor re la t ion  coefficient 

( equation ( 4. 2 3 )  ) of the backscat tered fields. 

It should be noted that the r e su l t s  obtained f o r  the var iance  and 

covariance of the backscat tered fields for  the c a s e s  of both the rough 

planar  and rough hemispheric  su r faces  (when  one employs a s ta t is t i -  

ca l  model for  the sur face  J P D F  along with the Gauss ian  cor re la t ion  

coefficient) a r e  not valid in the l imi t  a s  s lope,  S, approaches ei ther  

l imit .  In the case  where slope approaches z e r o  ( i .  e. the rough s u r -  

f ace  degenerates to  a smooth s u r f a c e ) ,  a l l  of the var iances  and 



. 

co.:arianLes appro;ch ze ro  iridicaring z e r o  power 

face,  which, of course ,  is  not true. f-lc.weter, s 

19: 

f r o m  a smooth 5u r -  

beha\rior i s  a resu l t  of assuming e L I l t r  that cor re la t ion  leqgth, a ,  

approaches infinity ( which contradicts ii previous assumption that 

su r f ace  height cor re la t ion  length be much sma l l e r  than any overal l  

dimension of the scattering surface) o r  that o- approaches ze ro  (which 

contradicts  another stipulation which r e s t r i c t s  the c l a s s  of surfaces  

under irivestigation h e r e  to "very rough" sur faces  where kw > >  1 ) .  

As r.ms slope, S, approaches infinity, the predicted power i n  all ca ses  

again approaches zero. That S would go to  infinity means that eiLher 

l l F I I  goes to  infinity. o r  'la1' approaches zero; such a situation means 

that  the surface is  made up of very jagged and high spikes, for which 

the whole physical optics theory  as  employed h e r e  is inapplicable. 

2. Backsca t t e r ing  c r o s s  section 
f o r  a spher ica l  rough surface 

The predicted back scattering c r o s s  section fo r  a spherical  rough 

s c a t t e r e r  m a y  be obtained froril (4 .  22)  in the usua l  manner and may be 

normalized to a dimensionless ratio by dividing by the geometr ical  

c r o s s  section of the sphere (ITA ) .  
2 The r e su l t  i s  

- for a perfectly conducting 
'sphere -zz [' - '($)I sur face ,  and 

( 4. 26a)  

I 
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( 4. 26b) Ysphere = T r  

2 

. L [1- a(;)] 
f o r  c i r cu la r  polar i -  

SZ zation and a non-  

As mentioned previously,  ( 4. 26a)  unfortunately does not reduce 

to unity f o r  a smooth sphere ( S - 0 )  a s  it should but instead approaches 

zero.  

Theory of scat ter ing f r o m  rough sur faces  i s  l i t t le by l i t t le i m -  

proving and coming of age,  but t he re  a r e  many limitations and d iscrep-  

ancies  a s  yet unconquered. 

applicability i s  growing continuously and p romises  to reveal  many s ta -  

t i s t ica l  facts  about sur faces  f r o m  the proper t ies  of their  sca t te red  

electromagnetic waves. 

However, i t s  usefulness in i t s  range of 



SUMMARY 

An experiment  i s  descr ibed  and analyzed which offers  a method 
of determining the root mean square height of a rough surface by 
measur ing  the cor re la t ion  between two sca t te red  waves a t 'd i f fe ren t  
f requencies  f r o m  a s ta t ionary surface a s  a function of frequency sepa-  
ration. No sat isfactory method to date exis ts  fo r  determining the r m s  
height of a rough surface using r ada r  waves. 
rough planar sur faces  and rough spherical  sur faces  ( such a s  planetary 
s u r f a c e s )  a r e  analyzed, and the resul ts  a r e  shown to be quite s imilar .  
Also,  the backscattering c r o s s  section of rough spher ica l  su r f aces  is  
found as a function of r m s  sur face  slope and dielectr ic  constant. 

The problems of both 



APPENDIX D 

F r o m  equations ( 3. 5 ) ,  the s ta t is t ical  model for  the J P D F  to be 

I used is  

where  5 and 5 '  a r e  the two random variables  represent ing the sur face  

1s -i;ic euri-eiztlon c-efficiyr1! 
- .  

height a t  the points ( x, y j  , ana ( x i ,  y : )  ; 

between 5 and 5 ' ,  while the means  of t; and 5 '  a r e  both z e r o  and the 

var iances  of both a r e  ute 

of the second kind. 

K1 i s  a f i r s t  o rde r  modified Besse l  function 

R i s  a function of p = j(  x-x' )  + ( y-y ' )  ', i. e. , 

separa t ion  between the two points. 

A. Determinat ion of the Joint  
C h a r a c  te  ri s tic Function 

The joint charac te r i s t ic  function i s  defined a s  

00 

21 1 
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Make the following change of var iables  

Then the joint charac te r i s t ic  function becomes 

UU( 1-R2) 112 uc R uu 
y + j  x + j  x 

Mt;t;t( ju, jv;p) = 1s e J P  a 
-00 

urn( 1-R 2 ) d2 U 
and b =-( uR + v) The in tegra ls  in b r a c e s  6 @ where  a = 

a r e  identical in f o r m  and each is integrated a s  follows 

a) 

0 
0 -a) a) s But -1 eJaYyKl ( -y) dy= + S ejaYyKl ( -y) dy = 

0 

e-jaYyK1 ( y)  dy 

0 -a) 

where the l a s t  integral  was obtained by replacing y by -y. Thus the 

or iginal  inte g ra 1 bec orne s 



2 1 3  

The las t  in tegra l  i s  evaluated in the  tab les [  Ref .  28,  p. 763,  # 121 : 

a3 

1 z{ y cos  a y  K1( y) dy = 
( 1 + a2)3 /2  

0 

Hence the joint cha rac t e r i s t i c  function becomes 

Seve ra l  fac ts  may be readily ver i f ied  f r o m  this cha rac t e r i s t i c  

function: 
Q 
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Thus the s ta t is t ical  model  of ( D - 1 )  and ( D - 2 )  posses ses  all the 

necessary  requi rements  of a t rue  probabili ty density function and 

charac te r i s t ic  function of a random su r face  height, except that 

W (  t;, t ; ' ;p)  is  not symmet r i c  in t; and < '  ( and consequently 

Mt;t;i( ju ,  jv; p)  is not symmet r i c  i n  u and v ) .  

B. Evaluation of Integral  ( 2 .  26) 
and ( 2 .  27) 

Employing the s ta t is t ical  model of ( D - 2 )  for  the joint cha rac t e r -  

is t ic  function, the expressions f o r  the covariance between the sca t te red  

fields a t  two frequencies ( given in ( 2. 2 6 )  and ( 2. 27) ; ( 2 .  26) i s  the 

s a m e  a s  (4. 1) when the average  backscat tered field i s  z e r o )  can  be 

evaluated; by making the frequencies  equal to each other ,  the resu l t  i s  

the average backscat tered power. Since both in tegra ls  a r e  similar in 

f o r m ,  only the derivation for  ( 2. 26) will be made here .  The  in tegra1  

of this equation has  the f o r m  

m 

I E s p J o (  2kl s in  8 p )  M C ~ I (  -j2kl s e c  8, + j2kzsec 8;p) dp, 

0 

where  according to  ( D - 2 ) ,  the joint cha rac t e r i s t i c  function h a s  the 

- 2kl sec 8u - 2k2sec 8a 
f o r m  (defining m = 6 and n 6 

1 
Mt;t;i( -j2kl s e c  0 ,  j2kzsec 0; p )  = 

312 { [  l + m 2 (  l - R z ) ]  [ 1 + (  - rnR+n) ' ] }  

- 1  
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I 

Upon expanding D,  one has  

D= l+ m2 + n2 + rnznz( 1 -R2) + m4 ( R2-R4)  -2mn( R + m2( R-R3 ) ) 

But a s  cor re la t ion  function R approaches zero ,  ( i .  e. , fo r  

separat ion,  p ,  ve ry  l a r g e ) ,  this function becomes D= 1 + m2+ n2+ m2n2, 

which is a ve ry  large quantity because of the fact  that  k l u  and k2u a r e  

very  large.  

But for R =  1 ( i. e. , p =  0 )  , then D = 1+ m2+ n2-2mn= 1+ ( m - n )  2, which 

may be sma l l  for  m and n approximately equal. However, since D 

becomes very  l a r g e  for  R varying slightly f r o m  unity, the f i r s t  two 

t e r m s  in the s e r i e s  expansion of R = e -p2/a2 may be used (on ly  the 

Gauss ian  c l a s s  cor re la t ion  coefficient rrlodel i b  consicercd h e  re :  I .  ; 

therefore ,  in this range,  R = 1 - . The equation for D becomes,  
a2 

Hence 1/Dd2 i s  very  small  and the integrand i s  negligible. 

. -  

L 
D = 1 -t ( m-n) + -[ m2( m-n! 2+ mnl p2 , or  

a‘ 

D E o 2  + p 2 p 2 ,  

2 
a 

where  cy2 = 1 + ( m - n ) 2  , 8’ = - [ m2( m-n)  + mn] . 2 

Let  y E 2kl s in  8. Therefore  the integral  I becomes 

CO 

The value of this l a s t  integral  was found in Ref. 28, p. 696, #6. 554-4. 

Substituting the actual  constants into 0 ,  and and noting that 

k2 = kl + Ak, one obtains 



2 1 6  

4 
3 (Y = J 1 + - u2Ak2 sec’ 0 

however,  since Ak < <  kl , the expression for F becomes 

Therefore ,  the integral  I becomes 

substituting this value f o r  I into the covariance of equation ( 2 .  26 )  and 

employing the fact  that  Sz =,z , and 

obtains 

40-2 k 
= 1 f o r  Ak <<  kl, one 

k2 

J6 sin e c o s  e - 5  
cos4e  sin(Ak sin OLy) 

Ak sin 0 Ly 
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The averaged backscat tered power  i s  obtained by setting kl = k , = k ,  

A k  = 0 in the above equation; this gives 

- -  6 sin e c o s  e . 
3 4 S - C O S  8 e 

I HilZ 
41-r Ro 2 LxLY'  s2 

Equation ( 0 - 3 )  is  equation (4. 7) of the text while ( 0 - 4 )  is  used 

to find ( 3 .  10c ) .  
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