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DETERMINATION OF MEAN SURFACE POSITION AND SEA STATE FROM

THE RADAR RETURN OF A SHORT-PULSE SATELLITE ALTIMETER
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Using the specular point theory of scatter from a very rough

surface,_the average backscatter cross section per unit area per radar

cell width is derived for a cell located at a given height above the

mean sea surface. This result is then applied to predict the average

radar cross section observed by a short-pulse altimeter as a function

of time for two modes of operation: pulse-limited and beam-limited

configurations. For a pulse-limited satellite altimeter, a family of

curves is calculated showing the distortion of the leading edge of the

receiver output signal as a function of sea state (i.e., wind speed).

A signal processing scheme is discussed that permits an accurate

determination of the mean surface position--even in high seas--and, as

a by-product, the estimation of the significant seawave height (or

wind speed above the surface). Comparison of these analytical results

with experimental data for both pulse-limited and beam-limited operation

lends credence to the model. Such a model should aid in the design of

short-pulse altimeters for accurate determination of the geoid over

the oceans, as well as for the use of such altimeters for orbital sea-

state monitoring.

INTRODUCTION

Sea surface roughness has always represented an unavoidable degradation to

the performance of a satellite radar altimeter [1'2]*. _ It would be desirable for geo-

detic purposes to measure the position of the mean sea surface to an accuracy of less

than a foot. Sea states over the oceans result in waveheights commonly of the order

of six or more feet. It is physically obvious that such waveheights will "stretch"

the receiver output pulse in some way, producing an uncertainty in the position of

the mean surface of the order of the sea waveheight. Since sea state at any given

time and place on the ocean is usually unknown, and since the interaction mechanism

of an altimeter pulse with the sea has not yet been fully analyzed, doubt has re-

mained as to the efficacy of an altimeter to determine mean sea level to the precision

geodetically desired.
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It is the purpose of this paper to show that sea state effects on altimeter

p_tter_nce need not limit its accuracy, primarily because the interaction between

t_c radar pulse and the ocean waves is understood and predictable. Using a physically

li_ple but rigorous theory, we intend to analyze the pulse distortion from wind-

_rtven sea waves. The validity of the results will be established by comparison with

t_o indel_ndent sets of experimental data.

Based upon the acceptance of the analysis set forth herein, we feel that

_an sea level can be extracted from a satellite altimeter receiver signal. A simple

one-step process will be suggested, whereby the incoherent, averaged signal versus

t!_ is differentiated, and the mean level is seen immediately as the position of

the peak. The rms ocean waveheight and/or wind speed responsible for the ocean waves

can then be inferred directly from the width of this signal derivative pulse.

PHYSICAL THEORY RESPONSIBLE FOR SCATTER

For the microwave frequencies at which an altimeter will operate, scatter

from the sea within the near-vertical region directly beneath the satellite is quasi-

mpccular in nature. This means that such scatter is produced primarily by specular

or glitter points on the surface whose normals point toward the satellite. This is

the same mechanism producing the dancing glitter of sunlight or moonlight on a water

surface. Such scatter persists only as far as 15-20 ° from the vertical, since

gravity waves can seldom maintain slopes greater than this amount before they break

and dissipate energy. A physical picture of the specular points illuminated within

a short-pulse radar cell advancing at an angle 8 with respect to the mean surface is

shown in Figure I.

_als specular point scatter is readily predictable from geometrical and/or

physical optics principles, and has been analyzed by this author previously |3] . Here

we extend the theory to include the height of the surface, since the short radar

pulse will not illuminate the entire surface at a given time, but only those waves

whose heights are sufficient to lie within the radar pulse. As the starting point,

we note both from elementary geometrical optics principles or from more rigorous

*References are given on page 19.
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physical optics derivatlons [3'4] , that the field scattered from N specular points

(expressed in terms of the square root of the backscatter cross section) is

N

C_B/a . i__._..t/, g_/_ ei2kohi cos e

, (l)

where gl is the Gaussian curvature at the i-th specular point, i.e., gi : 1°_iP2i1'

with Pll and P2i as the principal radii of curvature at this point. Also, h i is the

height of the i-th specular point above the mean surface (taken as k = 0), 0 is the

angle of incidence from the vertical, and ko = 2n/1 is the free-space radar wavenumber,
J

being the wavelength.

Now, we square the above equation and average with respect to the phase,

_ij' noting that _ij = 2k° cos 8(h i + hj) will be uniformly distributed between zero

and 2_ as long as the sea waveheight is larger than the radar wavelength. Thus the

average of the double summation over i and j is zero except where j = -i, reducing the

result to a single sunmmtion:

N

<aB>Ph : " i_ gi (2)

Now, we rewrite this equation in integral form as a distribution of specular

points versus height above the surface, h, and Gaussian curvature, g, as

, (3)

where AN(h,g) is the number of specular points within a surface patch of area A,

within the height interval h to h + dhp and with Gaussian curvatures between g and

g + dg.

We now complete the averaging process by defining n(h,g) m<N(h,g)> as the

average specular point density, and we then denote _O(h) as the average radar cross
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section per unit area of the surface per unit height increment, Ah, at a given

height h; thus we have

_°(h) ffi_n(h,g) g dg
(4)

Here we employ the normalization d_ = _.=_°(h)dh, where o ° is the standard average

backscatter cross section per unit area. Thus_ a short pulse producing a vertical

radar resolution cell of width Ah at height h will produce, on the average, a radar

cross section per unit area of _°(h)Ah.

The specular point density, n, can readily he determined (almost by

inspection) from the work of Barrick [3] preceding Eq. (7) of that paper; one must merely

include height in the probability densities. Thus the density of specular points

within area A is

n(h,g) dg = p(h,_xsp,_ysp,_xx,_yy,_xy)l_xx_yy - _yld_xxd_yyd_xy , (I0)

where p is the joint probability density function of the surface height h, the surface

slopes _x' _y' and the second partial derivatives of the surface at a given surface

point. Since it is known a priori that scatter is originating at surface regions

with their normals pointing toward the satellite, the slopes which must be used are

geometrically known; we denote them _xsp and _ysp"

Likewise, the Gaussian curvature at a specular point is found from

differential geometry to be

g

llence we arrive at the result

2 2

(1 + C_sp + Cysp)

lC_yy - C_yl " (II)

" Cx_yIP (h, Cx sp, Cy sp, Cxx, Cxy ,Cyy) X

• (1 + Cx2sp+ Cysp)

I_xx_yy " _y I d Cxx d _yyd Cxy

_ _ C_sp,CysP)ffi _(I + {xsp + Cysp) p(h,
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For backscatter, the squared factor In parentheses is merely equal to sec 4 8,

where 8 is the incidence angle from the vertical. Also, It is simple to show that,

while the surface height h and second derivatives are correlated, the height and

slopes are uncorrelated. Hence, if the surface is Gaussian (or nearly so, which is

true for the sea), the height and slopes are statistically independent and we have

"_°(h) = n sec 4 O p(h)P(_xsp,_ysp ) , (13)

where p(h) is the height probability density and p(_x,Cy ) is the joint slope

probability density. The above result can now be applied to predict the average

radar cross section observed at a short-pulse altimeter as a function of time.

APPLICATION TO SHORT-PULSE SATELLITE ALTIHETER

I. General Development

We now apply Eq. (13) to the problem depicted in Flg. 2: a satellite at

altitude H emitting a spherical pulse which in turn sweeps past a spherical earth.

The spatial pulse width for a backscatter radar is cT/2, where c is the velocity of

light and • is the time width of the pulse (compressed, if applicable) at the receiver

output. Likewise, the distance of the spherically emanating pulse from the satellite,

measured in time at the receiver from transmission of the signal, Is ct/2. However,

for convenience, we henceforth choose t = 0 as the time that the center of the

spherical pulse shell strikes the uppermost cap of the spherical earth. In other

words, in the absence of any roughness, the received pulse from the suborbital point

will be a replica of the processed transmitter pulse, and we choose its center time

position as a reference in order to study the effect of sea state on pulse distortion.

First of all, we note from Fig. 2 that the angle of incidence, e, at any

point on the surface is given by 8 _ _ + _0 =" _(I + H/a) for 9 small. The incidence

angle at the intersection of the mean earth spherical surface and the center of the

pulse cell, expressed in terms of receiver time is then O =_J(ct/H)(l + H/a). For

a short pulse, e can be considered a constant within the pulse cell width. The

height, h, to a point at the center of the cell above the mean sea surface can then

be given as

h= H(1 - cos _) + a(1 - cos _) - (ct/2)cos
cos _ (14)

and for _ small, this reduces to

=.H Hh _ ,_(1 + _) - -- . (15)
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At this point, we must make some assumptions about the surface statistics

and radar properties in order to perform the integration. For the sake of studying

che general nature of the radar return, we make the following assumptions: (i) the

_Ign_l shape is flat, of width _, and zero everywhere else, (ii) the antenna beam

pattern Is uniform out to _B off the axis, and zero everywhere else; _B is thus the

haLf-po_er half-beamwidth of the anfenna We assume also that the sea surface height

and siope probability distributions are Gaussian, realizing of course that the height

distribution to second order is not quite Gaussian, but slightly skewed from the

s)_r_etric Gaussian shape, and has less probability in the tails. Furthermore, we

=ssume that the sea is nearly isotropic, making the slopes _x and _y independent of

wlnd direction. This is quite valid for very snmll incidence angles (and hence

specular slopes).

Thus we have

and

tan = 0

1 s_

p(_xsp,_ysp) = p(tan 0) = _ e , (16)

p(h) =

,,here s== + <cy> =

h _

e , (17)

Later_ when relating these quantities to wind-developed waves, we shall use

the relationships

= 2.55 X I0 "_ v_s= = 5.5 X i0 "s v and ah (18)

where v is wind velocity in meters per second. The first of these relationships is

inferred empirically from slope data versus wind speed presented in Phillips [5], and

the second is obtained from integrating the Phillips wind-wave height spectrum.

Thus, the observed average radar cross section as a function of time will

be

O(t) = 2_2a 2 p(tan O)sec ¢ O sin _p p(h)dh d_o , (19)
Ah

2

v_ere 0 and h were related to _0 previously.

_'her. possibly more realistic, pulse and beam shapes can be readily inserted into
t_e Antegral if desired.
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For a pulse width sufficiently short that Ah _ (c_/2) < 2ah, we can

approximate the second integral and obtain a closed-form answer for the remaining

Integral. Physically, this requires that the spatial pulse width be less than the

rms ocean waveheight (peak-to-trough). This is realized on the open ocean with

compressed'pulse widths less than about I0 ns for waves excited by winds greater than

about l0 knots. For simplicity we shall make this assumption here, analyzing the more

general case at a later date. The result is then

o(t) = 2s=[(l/a) + (l/_)] rf
- - , (20)

where _' = H[l + (R/a)]. The quantities in the braces are the error functions; the

first one is responsible for the rising leading edge of the radar return, while the

second produces the fall-off of the trailing edge.

2. Pulse-Limited Altimeter (_B >>

When the radar is sufficiently high, the beanwidth sufficiently wide, and

the pulse length sufficiently short, the response of the altimeter is said to be

pulse-limited. This means in effect that the earth area illuminated most of the

time lies in a "range ring" of constant surface area, as shown Jn Fig, (3a). Such

a situation will always exist for a short-pulse satellite altimeter, will nearly

always exist for aircraft altimeters, but may not exist for tower-based altimeters

looking at the sea (an example of the latter will be "discussed subsequently). The

general form of Eq. (20) is valid for either pulse- or beam-limited operation,

under the simplifying assumptions made previously (flat pulse and antenna pattern,

short-pulse operation).

In this mode of operation, the mean surface at the suborbital point lies

somewhere in the leading, rising edge of the echo. The essence of the problem,

however, is that the rise time of the leading edge is not only inversely proportional

to the transmitted signal bandwidth (or shape)--a factor which could easily be

removed for high signal-to-noise ratios because the signal shape is known a priori--

but the rise time varies also with sea state because of temporal dispersion caused

by the spatial distribution of specular points.
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To study the theoretical shapeof the leading edgeof the return for the

pulse-llmlted case,weexamineEq. (20). First of all, wenote that the return
rises rapidly to a maximum,hasa flat shapein the middleof duration tD = (H'/c_ _,
andfalls off to zero as rapidly as it rose. The shape of the pulse is symmetric

about tD/2. In practice, such a flat, symmetric return will not be observed, primarily

because the antenna pattern falls off with increasing $, rather than remaining constant

out to _B and then dropping suddenly to zero, as we assumed here. The shape shown

in Fig. 3a is more typical of the overall echo shape. The shape of this latter portion

of the signal need not concern us here, however, because it contains no information

about the mean surface position and little information about sea state. The maximum

value of o(t) is of concern, however; it is readily found from Eq. 420) by noting that

the maximum value of the quantity in braces is 2. Hence, OMA X = _ cT/[s_(i/a + l/H)].

To study the leading edge versus sea state, we use parameters typical of a

$kylab satellite altimeter: H = 435 km, _B = 1"5°' and 7 < 15 nsec. In addition,

we use Eqs. 418) to relate the statistics of the wind-excited surface to wind speed.

The result is the family of normalized curves shown in Fig. 44), showing the leading

edge of the return. The mean surface, of course, is located at t = 0, which appears

at precisely one-half the maximum value. The effect of sea state is as expected;

higher wind speeds and hence greater rms roughness heights tend to stretch (i.e.,

disperse) the leading edge, giving a greater rise time.

3. Beam-Li_nited Altimeter 4_ B <<

In less frequent altimeter applications, the configuration may be beam-

limited, as shown in Fig. 3(b). In this case, the interaction at the surface

directly beneath the altimeter appears planar, i.e., the effects of the spherical

earth and spherical pulse front are negligible. This could occur for a low-flying,

narrow-beam aircraft altimeter, but would not exist for a satellite altimeter.

When this extreme is achieved, the return can best be analyzed by expanding the

second term in Eq. (20) in a Taylor series, expanded about argument ct/(_ Oh).

This gives

o(t)=" + , (21)
22, s'oh

where the higher-order terms omitted here are of the order of H'_/_ Oh, which is

assumed to be small since we have taken ¢7/2 < 2o h.
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The maximum and the Gausslan nature of this return are easily seen from

the above equation. The width of the pulse is directly related to the rms surface

height, and the mean position of the surface occurs precisely at the pulse peak.

_EDUCTION OF MEAN SURFACE POSITION AND SEA STATE

FROM ALTIMETER RETURN

If we can employ a beam-limited short-pulse altimeter, we wlll have no

trouble deducing either the mean surface position or the rms surface height of the

ocean. The former is found from the pulse peak position and the latter from its

width, as readily observed from Eq. (21). Unfortunately, the parameter requirements

for this limiting configuration are such as to preclude its implementation on a

satellite.

Restricted, then, to pulse-limited altimeter operation from a satellite,

the question remains as to how to find the mean surface position in the leading edge

of the extended echo. From Eq. (20) and the curves plotted in Fig. 4, the answer

is obvlous--in the absence of noise. Merely find the half-power point on the rising

edge; this time corresponds to the distance to the mean surface. However, in the

presence of additive, independent noise, and with the often-jagged appearance of the

echo near its maximum (see measured returns in Fig. 6), finding this half-way point

becomes more difficult.

A signal processing technique to be suggested here makes use of the fact

that this half-power point defining the mean surface position is also the point of

maximum slope. Hence, we suggest that the processor form the time derivative of the

altimeter output power--after incoherent averaging (or smmuing) and band-pass filtering

of several pulse returns. Thus, the incoherent averaging and filtering will remove

much of the jagged noise_ while providing a smooth, clearly recognizable leading

edge. The derivative of this signal is easy to form from Eq. (20). It is

c _%
ecTa' (t) = _ • •, +,, . (22)

Oh

Figure 5 shows a family of normalized curves of this average altimeter

leadlng-edge output differentiated versus time. The pulse center is the mean surface

position, and its width is clearly proportional to rms surface height (or the square
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of wind velocity, for wind-driven waves). There is no need for absolute measures of

signal level, either for mean surface position or for sea state determination; hence,

atmospheric attenuation and system power drifts are not critical.

A large amount of noise can, of course, degrade the pulse positioning

accuracy of this system, as in any system. However, so long as aMA X is several

decibels above the noise level, the position of the pulse center in the signal

derivative should be relatively insensitive to noise. The degradation of altimeter

accuracy with sea state and noise level has the desirable attributes of pulse-position

modulation (PPM) systems of digital communication theory, but should be the subject

of further study.

COMPARISON OF THEORETICAL MODEL WITH GROIrgD-TRUTH DATA

For verlflcationof the theory and the various assumptions that have gone

into it, we choose measured data from two separate altimeter experiments: one pulse-

limited and the other beam-limlted. The pulse-limited data chosen was measured and

reported by Raytheon [6] for aircraft flights at I0,000 ft with a pulse width of

20 as. The half-beamwidth, _B, is 2.5 °, and the surface winds reported during

Plights 14 and 16 were 12 and 22 knots, respectively. Their averaged altimeter

outputs are shown in Fig. 6. Since there is no precise way of comparing measured

surface position with that calculated, we intend to compare the actual sea state

effects, as contained in the leading-edge rise time, tr, with those calculated. We

roughly measure rise times of 21 and 30 ns for the two records displayed, and use

Eqs. (18) and (20) to calculate the wind speeds required to cause seas producing

this rise time. The calculated winds are 14.1 and 2i".2 knots, comparing reasonably

well with the measured windS. Good comparison on Flight 14 was not expected,

because the condition c_/2 > 2oh is barely satisfied for this mild sea condition.

When this Inequality is not satisfied, Eq. (20) is not applicable, and one must

instead go back to Eq. (19). Practically, this means that with a 20 ns pulse, one

cannot hope to meaningfully measure sea stat_s which will produce a rise-time

stretching of less than 20 as.

As an example of the comparison of Eq. (21) for beam-limited operation with

measurements, we selected data recently reported by Yaplee et al [7]. His measurements

were taken from a tower at H = 70 ft above the water and _B _ I°" His pulse width

= 1 ns was long enough to assure beam-llmlted operation, but short enough to allow

6,_.
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the condition c7/2 < 2o h to be satisfied for the two sets of data reported. We

compare the shapes of the curve given by our Eq. (21) with what he has called the
.

impulse response shown in his Figs. ll and 12. He plots the responses measured

both by radar and by a wavestaffj for two different days on which the significant

wavehelghts (measured by the wavestaff) were 3.1 and 5.2 ft. Since his xesponse

heights were relEtlve, we compare the shape of his curves in Fig. 7 with that of

our Eq. 21, using rms waveheight, ah, corresponding to 3.1 and 5.2 ft. The

agreement in wldth is quite good. The comparison also points out where the Gausslan

assumption for the sea height is wegk: in the echo tails and in the symmetry about

the center. The Gausslan surface has some (small) probability of very large heights,

and is always symmetric, whereas the height of real ocean waves can never be

infinite, and the surface is not exactly s_mnetric for positive and negatlve heights.

These differences, while interesting, should not detract from the fact that the

simple Gaussian model can be applied adequately well to predict mean surface position

and rmswavehelght.

CONCLUS IONS .

The principal conclusions to be made from thisanalysls are that a

short pulse altimeter can be used--even in the presence of high seas--to measure

accurately the mean surface level and also to deduce the sea state. The simple

interaction of the microwave altimeter pulse with the sea a't near-vertical incidence

is separable from the more complex interaction mechanism at larger incidence angles;

It follows the straightforward specular point theory derivable from either geo-

metrical or physical optics.

In satellite applications, the altimeter return will be pulse-llmlted

in its nature. For reasonably meaningful measurements of the geoid, the pulse

width must be kept small, i.e., less than 20 ns. It is precisely for these short

pulses that ocean waveheights can temporally disperse the signal leading edge. We

have shown by the specular point theory, however, that this interaction is known

and its results are predictable. We have suggested and discussed a signal processing

scheme employing the "signal derivative, which can locate the mean surface position

from the pulse position and the rms surface height from the pulse width.

*The impulse response essentially has the effect "deconvolvlng" the pulse shape and

size from the return to give a result with the same meaning as our Eq. (21).
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Comparison of the theory with measurements and ground-truth data for two

different altimeter modes (pulse- and beam-limited operation) lend credence to the

theory. System noise can and will limit altimeter accuracy, but this ca_ be reckoned

with in a systematic manner using principles of PPM con_nunlcation theory. Other

practical effects such as nonrectangular pulse shapes can 5e accounted for in any

further system analysis by including an additional pulse-shape factor in the

_ntegrand of Eq. (19_.

In short_ the pulse-sea interaction is at present sufficiently well

understood and verified that a short-pulse altimeter could he built which will

provide: (I) accurate determination of mean sea level to a precision much greater

than ocean wavehelghts, and (2) as a by-product, can provide rms ocean wave height

(or wind speed) as well.
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Figure 4. Leading Edge of Averaged Altimeter Output Versus

Time for Pulse-Limited Operation

16-16



.I

,!

H" 4.35 km

_e= 1.5°
T < 15 nsec _.*'E 0.9

v

%

mb 0.7

.9
,,I--

o 0.6

0.5

I I I I I I I I I I I I
-100-90-80-70-60-50-40-30-20-I0 0 I0 20 30 40 50 60 70 80 90 I00

Time, nonoseconds

Figure 5. Derivative of Leading Edge of Averaged Altimeter Output

Versus Time for Pulse-Limited Operation.
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