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ABSTRACT

199¢ >

Two experiments are discussed which permit the determination of
the local statistical backscattering properties of the lunar surface or
the surface of another planet. The first experiment employs the return
from a '"'range ring' of the moon, i, e,, the fact that a transmitted radar
pulse of the proper length illuminates only a certain well-defined annular
portion of the lunar surface at a time. The second experiment makes
use of the doppler spreading of a discrete CW incident wave upon the
lunar surface which is moving (rotating and translating) in a predeter-
mined manner, In this manner, the power density spectrum of the
returned signal at a given frequency near the center of the carrier cor-
responds directly to a given strip of surface area having a definite
velocity component in the line of sight, This strip of surface area is
called here a "doppler strip'.

The values in obtaining these local statistical backscattering
properties is that they can be compared directly to similar properties
of a variety of surface samples from the Earth, From this comparison
one can learn more about lunar surface composition, roughness, and
average dimensions of surface features without having to rely upon the
assumption of a certain model or theory of scattering in the formulation

of the problem,
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TWO EXPERIMENTS YIELDING LUNAR SURFACE
INFORMATION EMPLOYING POLARIZED RADAR WAVES

I. - INTRODUCTION

Little is known about the processes which form the lunar surface.
Therefore mathematical attempts to determine statistical properties of
a section of the local lunar surface from reflected electromagnetic
radiation by initially assuming a certain statistical scattering model
generally agree poorly with measured data over a wide range of fre-
quencies. Any mathematical model is at best a combination of many
assumptions and approximations; the justification for many of these at
times seems to lie somewhere between fact and wishful thinking. There-
fore it seems justifiable to attempt to compare the ability of the lunar
surface to scatter electromagnetic waves of various polarizations with
similar measurements made on a variety of surface samples in the
laboratory, rather than basing all predictions solely upon the assumption
of some dubious scattering theory and model. One of the assumptions
made in reducing any scattering theory to useful results is the restric-
tion of the frequency range either to the high (where wavelength is much
shorter than lunar surface features) or to the low end (where the con-
verse is true). It is believed that much information about average
surface dimensions can be found precisely in the intermediate region.

At present, radar transmission is not directive enough that a
well-defined and easily locatable lunar surface area can be separately
illuminated. Thus, one difficulty arises in designing an experiment which
can determine local lunar statistical surface properties involving the
familiar backscattering cross-sections per unit area rather than a lumped

cross-section for the entire illuminated lunar hemisphere. Another diffi-

culty lies in obtaining average properties and in determining the type of
averaging to be done. In this report, two experiments are discussed,
each yielding average values of backscattering cross-sections per unit
area of the local lunar surface of various transmitting and receiving
polarizations. Also found are average values of combinations of these
cross-sections with the phase differences between the elementary scat-
tering matrix elements, ! All of these average quantities can then be
compared with similar, easily obtainable averages made on various
surface samples on the Earth. These comparisons can yield dimensional
statistical information, such as mean height and slope as well as com-
position of the lunar surface and its electircal reflective properties.



Assuming the mean lunar surface is spherical, the two experi-
ments described here employ methods of planetary mapping discussed
by others in the literature involving return from a *'range ring'' and
return from a "doppler strip'., The situation to be examined here is
more invelved than those previously discussed, because polarization
effects are included, Thus a given linear transmitted polarized wave
does not strike all points of a range ring or of a doppler strip with the
polarized field vector oriented in the same direction, This is not
an issue where one ignores polarization, as in the case of acoustical
waves or where light waves of all polarizations (random polarization)
are present, The inclusion of these polarization cffects naturally results
in a more complex situation to be analyzed; however, in return, this
added complexity yields more statistical surface information,

The first experiment involves the transmission of a well-defined
radar pulse of a determined polarization, The energy in this pulsc in
the far field then propagates in a wall enclosed by two planes of fixed
separation, Upon striking the forward lunar hemisphere, this "wall"
illuminates a definite annular area, called a "range ring', which moves
toward the limbs of the moon as the wall propagates forward, The return
from this ''range ring' can then be used to obtain certain information
about the local surface backscattering properties, The experiment is
therefore a study in the time domain, The transmitting and receiving
antennas are to be various combinations of lincarly and circularly
polarizing antennas,

The second experiment involves the study of the power density
spectrum of the return from the moon after illumination by a CW carrier,
This is possible because the moon has a determinable angular velocity
at any given time, which results in a doppler spreading of the trans-
mitted frequency related to the axis orientation and angular velocity of
the moon, The surface regions farther away from the axis of rotation
shift the incoming frequency by the greatest amount, An incremental
surface area which results in a uniform shift in frequency is called a
""doppler strip', The return from such a doppler strip at a given
frequency can then be used to obtain local surface backscattering
properties, This experiment is therefore a study in the {requency
domain, Again, various combinations of polarization will be trans-
mitted and received, It will be shown that much more local surface
information can be obtained from this second experiment involving a
doppler strip than from the first experiment involving a range ring,
although the analysis in the second experiment is more involved,




The averaging processes used in obtaining these local statistical
properties from each of the above experiments will be briefly discussed
here. More than likely, averages made of local samples of surfaces
on the Earth will be ensemble averages. Averages made of the moon's
surface, however, will employ the fact that the orientation of the lunar
surface with respect to the Earth changes with time, Thus for the first
experiment, pulses transmitted at different times, over as long a period
as several hours or even days, should give rise to markedly different
returns, since the surface included in a given range ring changes in
orientation over a period of time, When these returned pulses of power
are averaged, they represent an ensemble average in time, In the
second experiment, if the CW signal is transmitted for an extended period
of time, such as several hours, the orientation of the actual lunar surface
included in a given doppler strip will change enough so that a time average
of the returned signal should provide a meaningful average of local surface
properties, Whether one is justified in assuming that the averaging methods
discussed above yield the same result as averages made on the Earth on
an ensemble of different surfaces will not be defended or explored here,
Suffice it to say that since the lunar surface changes its aspect quite slowly
and since measurements can be made over long periods of time, the above-
mentioned averages should not be markedly different from a surface en-
semble average,

The local statistical backscattering cross-sections and scattering
matrix phase differences which will be considered here relate local
vertically and horizontally polarized radiation, Local vertical polariza-
tion is defined to be in the plane of incidence upon a given local surface
area, while horizontal is perpendicular to the plane of incidence, These
average backscattering cross-sections and scattering matrix phase dif-
ferences should and will be functions only of the angle of incidence, v,
with respect to the local surface element,



II., BACKSCATTERING CROSS SECTION OF AN
ARBITRARY SURFACE ELEMENT

A, Linear Transmitting, Lincar Receiving Antennas

Throughout this section, the plane of incidence is taken to be
the y~z plane, the vertical polarization direction is detfined as the 0
direction, and the horizontal polarization dircction is deflined as the ¢
(in this case, ;Q) direction. With the lincar polarizing antennas oriented
in the directions shown, and employing the scattering matrix! relating
scattered vertical and horizontal to incident vertical and horizontal (the
subscript "1" refers to vertical, "2'" to horizontal), the desired incident
and back-scattered fields are written, respectively, as follows: (see Figs.
1 and 2):

-

. —-v—--»———-v.a” ajz ![cosv
{

—i cOSs Vv —s k - )
() E =k ; S E = cos(v-1), sin(v-1),
v sin v. vt L2 Ay Az

sin v
4drr

The back-scattering cross-section for linear incident polarization
in the v direction and linear scattered polarization in the v -{ direction
from the surface element dA is defined as

41TI'2 l EVS_(«: IZ
d —_—

Uv-é, v~ IZ .

—i
E
v

In terms of the incident and scatterced ficlds of Eq. (1), and employing
the fact that a;, = ay for backscattering, this cross-scction becomes,
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+
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+ ‘azz! sin® v sin (v-0).
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Fig. 1. Back-scattering from a surface element, dA.

TRANSMITTED WAVE PROPAGATING
INTO PAGE.

Fig. 2. Linear-to-linear antenna arrangement.



However, the squared magnitudes of the scattering matrix

elements are the respective backscattering cross sections, There-~

fore the above equation becomes,

1

[

= 0‘11COSZV cosz(v-g) + ZUIﬁUIz({al]—/alz) cos v cos(v=-{) sin(2v-{)
11

i1

+ 20'“0222 cos(/a“—/azz)cos v sinv cos(v=-{) sin(v=-{) + 0}, sin?(2v-1)
11

+ Zczzzofz cos(/ajp-/az)sinv sin(vay) sin(2v-{) + oy, sinzv sin?(v-1).

do

v-L,v

The above cross sections are the total scattering cross sections for
the area element dA; they have the dimension of area, From them one
can define a dimensionless scattering cross section per unit area as follows:

naﬁ dA .

Writing the last equation in terms of this dimensionless cross section,
one obtains

1 1

(2) M = nucoszv cosz(v-g) +ana1 maz cos(&u—&u)cos vcos(v-{) sin(2v-0)

v=0, v
11

+2n1§1 ngzcos(/a“—/azz)cos vsinv cos(v-{) sin(v-0) +nlzsin2(2v-§)
11
z 2 2
+2n§2n§2cos(&z—(azz)sin v sin(v-{) sin(2v-{) tnz sin (v~{).

From reciprocity considerations, it is evident that My, v - My, v-t
for backscattering. (The first subscript always refers to the polarization
state of the receiving antenna, while the second refers to the transmitting
antenna, )

B. Linear Transmitting, Circular Receiving Antennas

In the case considered, the transmitted incident wave is linearly
polarized in a direction which makes an angle v with the vertical, and the
left circularly polarized component present in the scattered wave is to be
received, The incident wave and desired scattered wave in this case arc

given by!, (see Fig. 3),
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The backscattering cross section from the surface clement dA
in this case is defined as

_ 4 1l lfilz

dop, = ———— .
o EL |2

Upon substitution of Eq. (3) into the above expression, expanding,
and converting to a dimensionless backscattering cross section, one
obtains

—

(4) mny, =

i
| n1pcos?v +Zr]"‘q12cos(( aj-/a ]Z)(osvmnv
1

2

11
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1 1 1

1
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From reciprocity considerations, it is true that in this case of
backscattering, Ly TN, and np,, = MR -

If the right circularly polarized component in the scattered wave
is to be received, the '"j'" in Eq. (3) is preceded by a minus sign and the
backscattering cross section is

L

1
(5) T‘RV= My, = —[ T'Ill COS v+ 27]1‘2 ngOs ([an - [ap)cosvsiny
1 1
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2
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+

I
2_2 . / . .
l'r]zzsum(/_g“ - [ag)cosv sinv

Mz + Nz sin®v] .
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C. Circular Transmitting, Circular Receiving Antennas

From Ref, 1, the backscattering cross sections sought here can
be written immediately in terms of the horizontal and vertical cross
sections and matrix elements;

1 1

1
(6) NRL = Mpg =g LMt ez F2nfing

cos(/ay; -{az

11 11
1 > 2 2 2 2 .
(7)) npp=g (114 M2z +4M12 - 2MiMzz cos(fay; - faz,) + 4n1inz sin(fay - /212)

1 1
: 2z .
+ 4mnganyz sin(/ay; -/ az)l

i L
(8) TRR 1 [n11+ﬂ22+ 4y, - anzmz?}_cos(/ 1-/3z2)
1

- 4n121nlzsm ([an - [an) - 4nzzmz sin(/ajp-/az) .

All of the dimensionless backscattering cross sections considered
are functions of f{requency and of the actual surface element and its
orientation, However, upon making an ensemble average over statistically
similar surface elements, the average backscattering cross sections per
unit area are functions only of frequency and the angle of incidence, 6,
thus, if one makes an ensemble average of Ty-t, v for example, and
averages term by term , Eq. (2) becomes (the brackets < > denote
ensemble average)

i

i1
<1]11>COSZVCOS (v-0) + 2<nfm 2zcos(( ay - [ap)>cosvcos(v-¢)sin(2v-L)

1

2<n121nf2 cos(faj - {az)>cosv sinv cos(v-L)sin(v-{) +<111?_>sinZ (2v-0)
1 1

Z<n222 mzz cos({ ay - /azz)>sinv sin(v-¢)sin(2v-¥) +<n22>sinzv sin®(v-¢).

(9)  <m

v-{,V

—+

+

Similar results are obtained for the other cross sections, All averages
are functions of 6, incidence angle., In all, the following averages appear
from the measurements discussed in this section:

1 1 11
2 2
22

(10) N>, <M”s <Mz, <’11 .3 cos (/211 - [222)>» <Mz sin(/ay) - ; 222)>>




1

(10) <numzcos(z ay - lap)>, <nfmzsmz u-lag)

‘ cont.

‘ <lele12 cos{/ajz - /az2)>, and <nzzﬂ12 sin(/ajp - (az)>

=

Since the backscattering cross sections my;, Mizs M2z, and the
various phase differences are all random variables over an ensemble
of surfaces, there is no justification, in general, for assuming statistical
independence among any of them. Thus averages like <n112n7_25cos([‘_a£-
Qu)> generally cannot be factored into the individual averages <m;; 2>
<n, 2> <cos([_u L_Jz)> It appears therefore as though there are nine
averages listed in Eq. (10) above which completely describe the scattering
properties of any statistically similar ensemble of surfaces. By knowing
all of these averages as a function of the incident frequency and angle of
incidence much should be revealed about the nature of a surface, and it
is indeed these quantities which are sought from the experiments described
in the next two sections.

The statistical quantities listed in Eq. (10) can all be easily mea-
sured in the laboratory for ensembles of sample surfaces having various
statistical, dimensional, and electrical properties and at various angles
of incidence. This can be done by arranging the sample surfaces on a
mean planar bed and using Eqgs. (2), (4), (5), (6), (7), (8), along with the
techniques and tables given in Ref. 2, The angles v and { can, of course,
be chosen judiciously so that the desired quantities fall out very simply.
Once these ensemble averages in Eq. (10) have been determined for a

han a1 I O

< a —————— —— - — - .
v Py va e e -

be compared with similar quant1t1es from the moon and other planets in
order to learn more about the surfaces of these bodies.

LEFT INCIDENT
RIGHT RECE!IVING

RIGHT INCIDENT
LEFT RECEIVING

IRCULARLY POLARIZING
ECEIVING ANTENNA

0

LINEAR POLARIZING

TRANSMITTED WAVE TRANSMITTING ANTENNA

PROPAGATING INTO PAGE

Fig. 3. Circular-to-linear antenna arrangement.




In the next two sections, the formulas derived in this section for
the various backscattering cross sections will be applied to the lunar
surface. In such a case the element of area, dA, will be a surface
element on a sphere, and the angle of incidence will vary for different
area elements on the surface,

II1. RETURN FROM A RANGE RING (See Fig, 4)

A radar pulse of sufficiently small width upon reaching the moon
will illuminate an annular ring, or range ring, on the forward hemi-
sphere of the moon's surface, Thus if the return is studied as a function
of time, it will correspond to the scattering properties of a progressively
changing range ring, starting with the forward-most point and proceeding
toward the ring of maximum diameter, The angle of incidence, Q, there-~
fore is a constant at all points on a given range ring, and increases with
time as the range ring illuminated moves progressively to the rear with
the incoming pulse. The resulting power received should then be a
measure of the back-scattering cross section per range ring, and can
be converted from a function of time to a function of the angle of incidence,
Q (see Appendix A for this derivation),

If n,, denotes the backscattering cross section per unit area from
the moon's surface, as discussed in the previous section (the o and 7
refer to the received and transmitted polarization states, respectively,
under consideration), then the backscattering cross section for an area
element, dA, on a given range ring is given by dog ;. = ng.dA, where dA
is the area of the element of actual reflecting surface of the moon.

The average backscattering cross section from an ensemble of
area elements, dA, in the same position on the same range ring but with

different rough surface samples present in the area element, is therefore a

function only of the angle of incidence, @, and the average area element;
i, e,, the area of an element on a perfect sphere of radius R. Denote
this cross section by <do;_>q:

(11) <doy.>q = <Ng>q dASPHERE - “Nor g R? sinadadv.

The subscript @ on the ensemble average bracket indicates that
the averages are functions of angle of incidence, which is to be denoted
by @ here. This subscript may be omitted at various places for brevity.
The average backscattering cross section for the entire range ring is

10




therefore found by irﬁtle{:grating Eqg. (11) over the entire range ring, and
is denoted by <dog , "> :
2w
(12) <d0'0,TRR>a = R* sina da 5 Me+”a dv.
0

Again it is assumed that the quantity on the left side of Eq. (12)
is measurable from the described experiment as a function of @ {or
can be computed from measurable quantities with Appendix A).

From Eq. (12) define an average backscattering cross section per
unit area for a range ring by dividing Eq. (12) by the area of a range ring
on a sphere; i. €., dARR - 27 R2 sin a da,

PROPAGATION
INTO PAGE A RADAR PULSE

PROPAGATION | RY ~ 9/ S\

DIRECTION

da
RANGE RING ILLUMINATED
BY RADAR PULSE
TOTAL AREA OF RANGE RING = daRR
RADIUS OF MOON = R = 1080mi.
FRONT VIEW SIDE VIEW

Fig. 4. Diagram showing radar pulse and illuminated
range ring.
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>

<do
RR> _ oT a
<YIO'T a” dARR °
This results in
RR . 2w
= < >
(13) <n¢T>a'§'; §0 Mot g dv .

A, Linear Transmitting,
Linear Receiving Antennas

In this case, it is assumed that a linearly polarized wave, E,,,
(see Fig, 4) is transmitted. At the area element shown (dA) on a given
range ring, the electric vector makes an angle v with the direction of
vertical polarization for that particular area element, The direction
of vertical polarization varies with the angle, v, of the particular area
element, dA, on the selected range ring and is always directed radially
inward in planes where v = constant, If the linear pclarization to be
received is in the direction v - {, the average backscattering cross
section per unit area which is applicable on the entire range ring is
found by taking the average of Eq. (2), as given in Eq. (9), as the element
to be used for <n _>.; thus for Mgr~g = <N >qs Eq. (13) integrates
to

v-0,Vv

(14) «RR > [<r|n>a><(l+%cosgg)

<
!

-

<

QR
N

11 1
+ <ﬂﬁ712?2(303(f aj)-/ag)lgcos 28 +2<n ;> g+ <npp>o X (1+Zcosig)] .

Using particular angular antenna separations, {, the above relation-
ship can be simplified for three special cases; i.e.,

RR> -1
(14a) <nv M

, a g[ 3<Tlll>a + 4<n12>(1 + 3<n22>a

FRY
+ 2<nfingcos ([laj - Zazz)>o,] ., fort = 0;

12

— -



1
(14b) <ﬂ§_§/2’ va §[<T111>Q +d<n> + <nzp>g

1

1
2<n@ngcos(/ayn -/az)Pql, for ¢ =xu/2;

and

RR
(14c) <Ny w/4, va

%[Z<qll>a + 4<r]12>a + Z<r|22>a |, for ¢ = + w/4,

Notice in the above formulas that certain quantities cannot be
determined separately from such a measurement; from Eq. (14) it
is seen that <nj;}>q cannot be separated from <nz;>q no matter how many
measurements are made at various angles, {. This separability will be
examined later,

B. Linear Transmitting, Circular
Receiving Antennas

In this case, the incident wave is linearly polarized in the direction
Ey. as shown in Fig. 4, and the circularly polarized components in the
backscattered wave are desired. The average backscattering cross
section per unit area to be employed here is found by taking the average
of Eqs. (4} or (5) and substituting the result into Eq. (13) for <ng . >q,
ice.y, MegPg = <qu>a . Upon integration Eq. (13) becomes
R

1 .
(15a, b) <nk§R>o, = Z[<TI11>0, + 2<n127g t+ <M22Pq £ 2<'“1nz ﬂl?z sin(/ay; - [a12)q

1 1
2 2 .
+ 2<mzgz iz sin(faj - /a2 ] .

The upper sign applies when the left circularly polarized component
is received, i.e.,, when the '""L'' in the subscript of the left side of Eq. (15)
is employed. The lower sign applies to the right circular component,
Therefore, Eq. (15) is two equations representing two different measure-
ments,

From reciprocity considerations discussed in the previous sections,

identical results can be obtained by transmitting circular and receiving
linear at an angle v, In this case, <nJ, VR>a = <anRR>a .
R

13



In this subsection and in subsection A also, it is interesting to
note that averages may be made from measurements in two different
ways. One way was mentioned previously: this is to transmit pulses
at different times so that the orientation of the moon's surface will
have shifted slightly between pulse transmissions, An ensemble
average can be made in this manner by averaging the returned powers
at the various times, assuming a sufficiently long averaging period.
However, even if the surface were perfectly stationary, an average
could be made by rotating the receiving and transmitting antennas to-
gether between transmissions. This causes a different combination
of linear states to be incident upon the same area element for successive
transmissions. The same result would be accomplished by keeping the
antennas fixed but rotating the moon about the axis along the direction
of propagation between transmissions; this results in an ensemble
average for a variety of surface orientations. This process is possible
for the above two subsections because there are an infinite number of
independent linear polarization states and because the surface is rotation-
ally symmetrical in a mean sense. This type of averaging is not possible
in the following subsection involving strictly circular states because only
two independent circular states are possible.

C. Circular Transmitting, Circular
Receiving Antennas

In this case, the average backscattering cross section per unit
area to be employed is found by taking the average of Eqs. (6), (7), and
(8) and substituting into Eq. (13) for <ngt>q; €. 8 » <Ng:>0 = <MRR”a »
etc, Notice that the various cross sections given in Egs, (6), (7), and
(&) are independent of v, the angular position on a given range ring,
contrary to the situation in the former two subsections, Therefore

RR, -1 : z
(16a) <T111§I]§>a =<1 R”a " Z[n11>a + 2<nfing cos(fay - [az)y t <Ny ]

and
1 1

2. 2
(16b, c) <ﬂ%§>a =1 (<P + 4<M>q + <Mz g - 2<nnimzzcos(/an - {222y

RR 1 % %
hd 4<mfmz sin(/ay - /apPo + 4<nzz M2 sin(/ajz - {322 »al.

N
o

These three equations add no information which is not already present
in Egs. (15) and (14), but in certain cases these measurements may be

simpler to make.
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The statement may also be made that essentially no further in-
formation can be obtained from employing any other general elliptical
polarization states, because all other states are a combination of
linear and circular states.,

D. Independent Information Obtainable
from these Measurements

From the measurements discussed in the above three subsections
employing range ring scattering, the following appear to be a summary
of the total amount of separate information obtainable from various
algebraic combinations of Eqs. (14), (15), and (16):

(17a) <My t2<ni’gq t+ <nzz¥y
11
z 2
(17b) <MmpPg + 2<numzzcos(/apn-/aznly t <my
11
2
(17c) <N12Pg - <Mu Nz COS ([a1-/a22)>y »
and

1
2
1

1 1 1
2 . / 2 2z .
(17d) <mimgzsin(/an-/apla + <ngznzsin(/an-/az Po .

Even these four quantities are not all independent, since Eq. (17c)
can be obtained from Eqs. (17a) and (17b). Just three independent
polarization parameters can be determined from all possible range ring
experiments. These do not seem like a significant amount of information
from the measurements and equations developed in this section; however,
they are better than no information at all, The actual value of this infor-
mation when compared to similar information measured from sample
surfaces on the Earth at various incidence angles seems worthy of serious
experimental investigation.

IV. RETURN FROM A DOPPLER STRIP (See Fig. 5)
It has been shown by Compton3 and others that the component of

velocity of the moon's surface in the ''x'"" direction resulting from rotation
of the moon for a given doppler strip located at ''z'' is given by

15
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and

VX:Q z cos &,

where £ is the angle between the ''y" axis and the moon's angular velocity
vector, §2, having magnitude £2. The coordinate system is oriented so
thaté\ points in the direction of the reflected wave (toward the Earth)

and §I is located in the x-y plane. Thus the component of angular velo-
city along the y axis, 2, = Q cos §, causes all points of given '"x'" coor-
dinate (on the same doppler strip) to have the same doppler shift since
they all have the same 'x' component of velocity.

Therefore, the shift in frequency of radiation returning from a
given doppler stripat z is

2w 2w .
A(.L):—C—-—O- Va2 =——EEQ COSQ.

2w
CO Q cos &

wo = carrier frequency (frequency of the returning signal reflected from
the portion at z = 0),

The frequency of the returning wave is wR =wy + Kz; K=

In polar coordinates, where z = R cosf, x = R cos ¢ sin Y, and
Y= K sin ¢ sin Y On the Suriace OI L€ [I1UUIl \a5SdULIICU DPIICL Ival 1 wiT
mean), this returned frequency is a function of 8 wg = wy + KR cos 0.

The returning time average power, S
of the one-sided power density spectrum as

r+ Can be expressed in terms

— 1 ol
S.= 5 g P(u,r)dwr .
0

If there is no noise present in the returning signal¥ then P(w,) is
zero outside a certain finite band resulting from the doppler shift of the
carrier. This integral can therefore be expressed in terms of z or 9:

* 1If the returning signal contains noise, this noise component must be
subtracted out of the power density spectrum; otherwise the scattering cross
section near the limbs (at z — +R) will appear to become infinite, as pointed
out by Compton in Ref. 3, This noise spectrum is flat over the narrow dop-
pler spread of the returning signal and may be subtracted out with no difficulty,
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. watKR K R
18 S = — ‘g P Jdw,. = =L S FK 2V,
(18) Te, v  2m o, KR O"r( r/@r = 5o _RPO'T(wO Kz)dz
KR .
iy o PO_T(wO+KR cos 9) sin 9dY,

It is assumed that the moon is illuminated by a CW signal of a
discrete frequency. If it were not for the rotation of the moon (i, e.,
for translation only), then the returning signal would consist of a
discrete frequency also, wy. It is assumed that the power density
spectrum, Pgs.(wy), of the returning signal of a given polarization can
be measured, This quantity will be used to obtain information about
average polarization scattering properties of the surface. In Eq. (18),
the ¢ and T therefore stand for the polarization properties of the re-
ceiving and transmitting antennas used to make these measurements,
The polarization states to be considered in this section are linear and
circular and combinations of the two, The time average, Sy; 4, of
the returning signal power as the lunar surface rotates slowly over a
long period of time is assumed in this report to be equivalent to an
ensemble average over surfaces statistically similar to the lunar sur-
face, The power density spectrum, Pgq{wy), at a particular returning
frequency, @y + KR cos®, can be integrated with respect to time in order
to obtain an average power density spectrum at that particular frequency
and value of 0, From this point, therefore, Py {wy) is assumed to be an
average value over time, equivalent to an ensemble average.

This average returned power, Sl‘o"r = <Sr0—.|.>' * may also be written
in terms of the backscattering cross section as discussed in the preceding

sections,

< > y
' T "R T TR® v Illuminated Surface

where a is the angle of incidence at a particular area element dA on the

sphere. S.

inc_ 18 the power in the incident signal in the polarization

state T. T

* The brackets <S> are used to mean ensemble average, while the bar
S is taken to mean time average.

18




Since the mean lunar surface is a sphere, the area element dA
for this mean surface is dA = R% sin0d6do., Therefore, equating Eq.
(18) to Eq. (19), one obtains

™

‘KR Po__r(wo-l-KR cos 0)sin 640
2m 0
g nl2
RZ . N
= SinC-r ¥ 47 R2 S Mg,7gde| sin0dod ,
mR® v Zmw/2

Dropping the integration over 6 on both sides, this expression
gives

w2 JKR
(20) S Nga dd = 5 P

..11'/2 inc.r

cr{wotKR cos 8) 2Fq(6) .

For brevity Fg+(9) is defined here as the doppler function and is
easily determinable from the average power density spectrum as a
function of 6. Thus from this measurable doppler function for a given
set of transmitted and received polarization states, the goal is to deter-
mine the various averages in Eq. (10) from the left side of Eq. (20),

First it is necessary to convert Eq. (20) from an integral over ¢
to an integral over a, the angle of incidence at an area element dA on
a given doppler strip at 6. The mean plane of incidence at dA is the
nlane containine ® and the normal to the surface at dA, i.e.. 2.

A A A A
(21) r = x sinbcos ¢ + y sinfsind + z cos 6,
The angle of incidence, a, i8 therefore defined by
A Q
(22) cos a=>’é'r= sin 8cosd, .% cos o =C.OS :
sin 0
and .% dicos &) = ~sinada = -sinbsind dy ;

si d [ 2
d¢=—13'a—‘—a—;butsinq>=i'\/l-coslq> =+ 1- 808 =

8in Bsin ¢ sin? 6

The upper sign applies in the upper half of the doppler strip, where¢ is
positive, and the lower sign applies in the lower half. The limits on the

19



left side of Eq. (20) over a are determined by breaking Eq. (20) up into
two integrals,

.0

g1'r/2 w2 0
<n_ > d‘P = § <n >4 d¢ + S <n > do .
sz TC Jo T @ /2 TG

Here the superscript u signifies the function over the upper half
only and the ! signifies the function over the lower half only. The limits
in & may now be replaced by the limits in Q;

‘Sﬂ‘ﬂ'/z < q gn/Z >u sin a da
.. n ¢ = <n
iz Ty, e v-cost
n/2-6 ’
< > sin a daQ
- Mot . °
o/ 2 fsinz 0~ cos? a

This process is necessary because @, angle of incidence, is
positive over the entire doppler strip. By interchanging limits on the
second integral and noting that
2

gin® V- cos®2 a = sin? a-cos?0 .

the above expression can be rewritten as
w2

(23) FO'T(G) = ( [<T]O”T>a1 + <n0"l‘>gJ sin A da .
‘JTJZ—b JsinZ a - cos2 O

Equation (23) is a form of the familiar Abel integral equation; the
functions <ng>¥ and <n<r1'>é and both functions of @ in general, and must
be evaluated for the particular polarization states being considered.

A, Linear Transmitting,
Linear Receiving Antennas

Here again, as in the preceding section, the applicable average
backscattering cross section per unit area to be employed in Eq. (23) is
found by taking an ensemble average of Eq. (2), resulting in Eq. (9); thus
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MNgra = <My-f,»”a. However, the angle v must be determined in this
case in terms of @ and 0 for a given area element dA. The angle v, as
defined, is the angle between the plane of incidence and the direction of
polarization of the incident wave; it is positive in a counter-clockwise
sense, as shown in Figs., 1 and 2, However, in this case the plane of
incidence rotates for each area element along a given doppler strip; it
rotates with the projection of the radial vector r, normal to dA, on the
y-z plane. This projection in tie y-z plane, looking in the direction of the
-x axis, i.e., the view of Fig. 5, is given as r' = Q sin Osin & + 2 cos0,
Assume that the direction of linear incident polarization makes an angle,
Yy, with z, positive clockwise, Then the angle v for a given dA is the
difference between them, i.e.,

= [ Q

v =/r s =Y e

— A
But the angle between r' and z is found from their dot product:

— _| A 8]
1 — T e Z - coOs .
cos /rh =z =TT — —— —
lr l ' l Jsm Osin” ¢ + cos ©
2 cos?t @
However, sin® $=1-cos"¢p=1- g from Eq. (22);
sin
2. sin? 6sin? ¢ +cos? 6 = [sin? 0-cos? a+cos? 6= |l-cos? a
= sin Q ,

Therefore, the angle v may be expressed as

3]
(24a) v =1+ cos! [C(,)S J - Y.
sin Q

The choice of signs in Eq. (24a) exists because an angle with a given
cosine can be either positive or negative. The upper sign is used there-
fore for the upper half of the doppler strip.

The angle ¢ in Eq. (9) is defined here to be the angle between the
direction of incident polarization,y, and the direction of the desired linearly
polarized component in the scattered field; as in Fig. 2, it is positive when
the scattered linear direction is counter clockwise from the incident linear
direction. The angle v-{ can then be expressed as

(24b) v-¢ =+ cos~! [COS 0

sin @

] e
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At this point, one can substitute Eqs. (24a) and (24b) into Eq. (9)
and then substitute Eq. (9) into Eq. (23), using the upper sign wherever
the choice appears folr the function <nv—§,v>g’ and the lower sign for
the function <nv—§,v>a . The procedure is quite straightforward, but
upon attempting to expand the algebra becomes extremely cumbersome,
This seems to be the proper point, therefore, to make a judious choice
for angles, y and {, and obtain specific sets of integral equations, The
particular angles are chosen with two aims in mind: (a) to make the
resulting mathematical expressions not too involved, and (b) to permit
the experimental equipment to be set up with certain easily established
orientations.

Even so, the algebraic reduction of the resulting expressions is
cumbersome, For this reason, only the resulting integral equations
are listed here and the details are shown in Appendix B. The accom-
panying figures show the orientation of the incident and desired linearly
polarized scattered component when looking toward the moon.

i
l. y=0,¢=20 E
b &E——
w/2 : 4 s
0
(252) Fyo0,g=008) = 2 ( cnyy>q __c0s 0 do E
Y w/2-9 sinda .lsinz a-cosg?b
w/2
+ 8 i <n>q cos?§(sin? a-cos20)da
/2-8 sin3 Q/;infa- cos® ©
m/2 i 4 cos?Ysin2q _cosZ0)da
+ 4 5: <Mnmzzcos(/ay -{az)l g >
/2.9 sinsa‘/;n a-cos 6
/2
+2 Sm <Nz > (sinza— cos? OFda
w/2-8 sin3Q JSinZG.- Cosz 0
ESII ok
20 l = i TT/Z, g = O Q
"/2 2 2 2
i - 0)~d
(25b) F. _ _nl6) =2 <y > (sin® @ - cos” 6)*da
y=mn/2,¢{=0 a - =
m/2-6 sin® aysin® @ - cos” 0
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/2 2 .2 2
(25D) +8 S" g cos” Hsin” a-cos® O)da
cont, “m/2-0 sin’ afsin a-cos” ©
w2 s 1 Cos2 U(si : Qa 2 v)da
) in G-cos d
+ 4 <Miimzzcos(/a; -,/azz)>a
“m/2-6 sin3 O../sin2 a- cos2 U
~,‘IT/2 4
+ 2 <lez>a cos” Uda
“w/2-9 sin> CJ.jsinZ a-cos® v
ES
Ei
3, y=0,§=w/20ry=n/2, t=mw/2 A
Z 5‘ -
/2
w 2 .2 2
-
(25¢) F._ ) (©6) = 2 <mp> cos” Ksin cos” v)da
v=0, {=7/2 a 3 2 F3
w/2-9 sin O.jsm a-cos 6
/2 2 .2
12 S <ng> (2cos O-sin a)z da
m/2-b sin® OJsinZ a-cos? O
2
m/ cos® §sin® a-cos? O)da

1
<mfn
2-9

_4§
/
w2

s2 (

<N

1
2
- >
2zcos(/a; ,/azz) a3 — 5
sin G/sm a-cos” O

2 .
cos 9(511'12 a-cos’ 0)da

.3 . ¢ s
sin O-jsm a-cos 0

“m/2-6
4, y=+.n/4, t=+w/2
w2 2. 2 .2
1 (2cos” B-sin” a)” da
(st) FY:—TT/4, §=1'r/2(9) = E\i <7111>o, <3 2 2
/-8 sin Qj51n a-cos“ 0
al2
wl cos2 G(Sinz a - cosZ 6)da
/26 sin> a/sinz a-cos’©

wl 2

Y/ 2-9

11 (
<niingzcos(fan - {2z2)>

2cos?0-gin® O.)Z da

. 2 2
sin3 a/sm a-cos 0O
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2 .2 2
(25d) + %S‘ <na>g (2cos” 6 - sin” Q) da .
cont. w/2-6 sin’ O-]sin2 a-cos® 6
5, y—O,g—w/4ory——Tr/4,§—-m4 z ————
Eif—'__'_‘
m/2 cos? B sin? ada il \4
(25€) Fy=0,¢=mn/4l9 = g <ra " . - 4
m/2-9 sin Cljsin a-cos © E

cos’ 8(4cos 0-3sin’ a)do

w/2 1L
+2 (\ ~ <MuMzcos([ay; - [212)>y

“m/2-9 sin O.fm a- cos 0
/2 L4
+ g <My sin Qada
Yn/2-8 sin’ O-Jsinz a-cos® ©
w2 11 (sin’ @ 2 0)(4cos’ O-sin’ a)da
2 2 sin Q-cos cos O-sin
+ 2 S‘ <MgzMizcos(fap-{azzlqy s 5 >
m/2-6 _ sin Qj;in a-~cos 6
w2 .2 .2 2
+ S‘ <ny> sin” a(sin” a-cos” 0)da
n/2-6 sin O.jsinz a-cos’ 0
6. y=0,§,=-'rr/4ory=1r/4,§='rr/4 ES
i‘xz\
TT/Z 2 e L2 A E P3 T
(250 F_o o al®= | <mpg oS fein od 2 ———
y=0,¢{=-m/4 @y 2 2
n/2-6 sin sin® & - cos” 0
/2 14 cos’ 6(4cosZ 0-3sin’ a)da
-2 S <mimacos(/an-/az)>qy = =
w/2-9 sin O.jsin a-cos 6
w2 n* ada
+ S <M1z Slns — 2
w/2-0 sin” aJsin a-cos ©
/2 2 2 2 2
A 11 (sin a-cos 6)(4cos U-sin a)da
-2 \ <T]zzT11zCOS( ayz- azz)>o. 3 2 2
“n/2-9 sin ajsin a-cos O
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ml2
(25f) + <M2z”q >
(cont) ‘n/2-vu sin30.f;in“0.—coszo

.2 .2 2,
sin Q(sin” a- cos” V)da

There is an infinite number of measurements consisting of various
combinations of linear polarization, but any of these other combinations
will yield no further independent information than that already contained
in the above six equations; six averages which appeared in Eq. (9) must
be determined, therefore these six equations will suffice.

B. Linear Transmitting,
Circular Receiving Antennas

The applicable backscattering cross section per unit area is found
in this case by taking the averages of Eqs. (4) and (5); thus <n >y =
<MLv~q or <nRry ~as (As shown previously, these quantities are identical
to using circular transmitting and linear receiving antennas; in this latter
case, the order of subscripts are interchanged, i.e., <Ny ,>qg = <N, 1”a
and <NRyv>a = <MyR >a.) Since the transmitting antenna is linear, emitting
a wave polarized in a direction making an angle v with the plane of incid-
ence for an area element dA, this much of the problem is identical to the
preceding case, Therefore, the angle v, as defined in Eq. (24a), is
applicable here also, where the angle y is defined in the same way.

Again it is less cumbersome to choose particular transmitting antenna

tmn Adevinlam A cranaval avnreacion. The details ate con-

ToT T T e ‘e - -

tained in Appendix B.

1, E
y=0 ¢
@ / Q
wl 2 L2 2
a 6 da
(26a, b) Fi, _O(G) = S‘ <mrg sin"Qcos” 0d
R* Y™ ml/2-v sin® a!sinza—cosz(‘;
me 4y in® 29
2 S <T]1211']1§Sin(l allv‘/alz)>c1 sin_Gcos da
w/2-0 sin® ajsinza—cosz()
n/2 % % . . (sin*a - cos?0)sirf ada
+ 2 § <mazNizsin{/aiz-/ a22)>q s > —
‘n/2-6 sin O.j;n a-cos O
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(26a,b) m/2 it da
{cont) + i <Niz>q Sln3 a : :
/2-6 sin” aysin a- cos” 0
m/2 o2 z 2
+ <My (sin a-cos B)sin ada
227 g, .
“n/2-6 sin’ ajsin[a- cos ¥

The above expression is actually two equations, the upper sign
throughout going with the upper subscript and referring to the left
circularly polarized component in the scattered wave.

3. i
4 Yy=txmw/2 E ]\
: A
z e
m/2 (sin?a- cos?6)sin?ada
(26c,d)  F (6) = <M1 q > =
RY:TT/Z m/2-0 gin Qfsin a-cos 6
2 2 2
(“/2 3 (sin @-cos 0)sin ada
t2 <ﬂ11ﬂ1251n( ai-~fap)g z 3
‘w/2-0 sin OLjsin a-cos 0
/2 3 2 in®acos’ 6 da
. . sin
22| <ndndsinifan-/anP _
w/2-0 sins O.lsinza-cos 0
TI'/Z .4
+ <miz>g sin Q dQ
m/2-0 sir? O.jsin‘a- cos“6
1T/Z 2 Ze
+§ <nzz>a sin Qcos da
m/2-0 sin’ O.jsin‘a—co?e
5. jok
6 y = n/4
/2 .
b)f 4 Z
1 sin @ da /'
(26e, ) FL (6) = = ( <MpPq /z\, y SN S
RY‘TT/4 2 n/2-0 sin? O.jsinzo.— cos®6
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w2 1 in*a da
(26e, f) x <mfmfsin(gau-zalz)>a =
(cont) “w/2-96 sin3 Ci.jsinzd.-(:osZ G
/2 11 4
5. 5. sin @ da
X ( <Mefmigsin(/ a1~/ az2)>y 3 5 >
‘w/2-6 sin O.jsin a- cos 0
/2 infa da
sSin
+ ( <M1’y
‘w/2-6 sin® ajsinza-cosze
1 (/2 sin a da
+ E‘ <Nz2” g 3 p
Yn/2-6 sin O.jsin a-cos®
' 2 2 2
wml2 % 3 sin Q(2cos 0O-sin a)da
-\ <mimzcos(/an-/a1z)>q
‘w/2-0 sin® O.jsin2 a- cos?0
/21 sin’ ®(2cos’ 0-sin® @)da
- i <nzzzﬂ1§005([azz-[ ap)>q 1r13 LS _sz
/2-0 ' sin O.]sin a-cos 0
_(mle 1L sin’ a(2cos’6-sin’ a)da
| + S <mMzzsin(/ayi-/azpPq
;} w/2-9 sin’ OL,IsinZO.—cosze
7. = -w/4 A
8 Y z €————
. y
Eg2
2o n) 0 - . /2 s sinfa da
( g ) L :_11'/4 —E“ ‘ M1~ a 3 3 3
RY m/2-90 sin QJsin G-cos ©
M2 44 in*a do
2 2 .
+ <mmizsin(/ay-/ap)q =
C . 3 . 2 2
vm/2-8 sin O.Jsm a-cos 6
o/ 2 11 4
: 2z 2 . sin a do
bl ( <nzznzsin(f{ajp-{az)g 3 > >
Ju/2-0 sin ujsin a-cos O
m/2 sin‘I o da
+ <N12>g 3 5 >
“mw/2-6 sin O.jsin a-cos 8
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4
1 in a da
(26g, h) + 5 5 N> s1in d
{(cont) m/2-0 sind afsin’a- cos?0
m/2 P o2 2y .2
503 sin” a(lcos” U-gin” u)da
+§ <npmizcos(/a 1- apR )’y 3 / R 5
m/2-0 sin wsin G- cos 0O
2 2 2
m/e 53 sin a(2cos U-sin «)da
+ < Mypnppcos(fag-/ap )y - =
‘m/2-0 sin O./sin a-cos 0
‘ o2 2 2
/2 3 z sin @(2cos U-sin Q)da
+ <Nnnzsin(fan-/az;)>y S — > .
w/2-0 sin afsm a-cos 6

Not all of the above set of measurements need necessarily be made
as long as all of those in Eq. (25) are made. Several pieces of information,
obtainable from Eq. (26), cannot be obtained using only combinations of
linear polarization, as in Eq. (25).

C. Circular Transmitting,

Circular Receiving Antennas

The equations in this case are simplest of all because they are not
dependent upon any antenna rotation, v. Taking averages of Eqgs. (6), (7),
and (8) and substituting them into Eq. (23) yields three more measurements

immediately:
/2 4
1 sin QO da
(27a) FRL(®) = F[ p(0) = zS <My - -
w/2-0 sin ujsin a-cos 6
) w2 4
Q
+ 'Z <n22>g 21 da Z >
‘w/2-0 sin3ajsin a-cos 0O
TT/Z Y

sm‘CL da
<Mminsz cos(/a an-/2:)q ]
Sln a

‘w/2-0 sm Q- cos ‘o
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and

1 /2 in' @ da
(27b,c) Fpp( =75 <o T - .
RR w/2-0 sin O.jsin a-cos 0
w/2 4
+_;_ S Mg sin a da
m/2-6 sin> afsin’ @ - cos?®
n/2 11 . 40. da
- 5 <"11f"]zzzcos([ a !—‘ azz)>a Sln3 5 5
m/2-9 sin O.Jsin a-cos 6
m/2 4 d
+2 <n12>a sin QA a
“n/ 2-6€ sin> O.Jsinzo.— cos’®
wal2 L1 4
+ 2 § <min:sin(/ay-/ap>e S0 % d%
m/>-0 sin’® a,/;ir?a- cos’ @
1 2 5 <ngmésin(/aj;-[az )y 31n3 = = .
w/2-06 sin O.jsin a-cos” 0

Again, the last expression is two separate equations representing two
separate measurements using the two possible permutations of right and
left circular antennas,

D. Determination of the Averages of Eq. (10)
from the Measurements of this Section

From the measurements discussed thus far in this section, all the
averages found in Eq. (10) can be found. In separating each of these
averages, three basic forms of an integral equation must be solved. The
solutions of these integral equations are discussed later.

In this section, a brief outline will be presented for the determination
of the averages of Eq. (10) from the measurements discussed thus far.
There are several methods of finding these averages, and the method
illustrated here is certainly not unique, One could, for example, solve
Eq. (25a) by merely grouping everything under one integral sign and
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‘ solving by brute force; the result would be cumbersome and trigono-

j metrically involved. By proper and judicious algebraic manipulations
before actually solving the integral equations, the complexity and detail
in their solution can be greatly reduced beforehand, ard the results will
be merely linear combinations of the desired averages.

. Determination of <nyp>y <12~ g <M1> s

1 i

2 2
and <0 CUS([ a-/ az)>a

Add Eq. (27b) to Eq. (27¢) and add the result to two times lLig. (27a):

wl2
(26a) 2 S‘ [<MiPa t 2<n>q + <nz2>
‘m/2-0 sin> aﬁ;inzu— cos?0

Sin4 a da

= Fy1.(0) + FRR(O) + zFRL(U) .

Add Eq. (27b) to Eq. (27¢) and subtract from it two tinmes kq. (Z7a):

e . 2 sinfa da
. - 511
(28b) 25 [<mz>q - <mindcos(/an-/az.)>yl
m/2-0 sin’ (ljsinzct— cos?0
= FLL(0) + FRp(Q) - 2Fp (9)

Now add Eq. (26a) to Eq. (26b) and subtract from this the sum of
Eqs. (26c¢) and (26d):

w2

(28c) 2 [<mirPg - <na>gl
/2-0 sin3OLjsinZCL—cosz()

L2 2 L2
sin“(2cos” 0-sin” a)da

= Fp,y=0(0) + FR,y=0l® - FL,y=m/2(0) - FR,y=q/ !

Subtract Eq. (Z5c)from Eq. (25d) to obtain the following:
TT/& 1 i

(28d) : ( [<Mr>g ~4<n2>, - 2<nin,d cos(/an-/az)>, ¥ e’ gl
‘w/2-u
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(284d) ECOS4 9—8(:0”52 Osin® 0 +sin® a)da

(cont) sin’ Qj;inza— cos?®

= Fy=_n/4,0=n/2(0) - Fy-o, gzw/&(e) :

The left-hand sides of the above equations could have been obtained
in the same form by other combinations of Eqgs, (25), (£6), and (27),
The above method is merely one of several. ’

At this point, the above four integral equations can be solved as
functions of @, the angle of incidence., The resulting solutions are the
bracketed quantities in the integrands, These are linear combinations
of the desired averages: they are four linearly independent equations in
{our unknowns,

1 i

2 2
<Mmrra, <Nza, <np>aq. and <mmzzcos(@g‘&zz_)>a ’

and may be readily solved.

i 1
. . 2 2 .
2. Determination of <mymzzsin(/ay-/2az)>q

Subtract Eq. (26e) from Eq. (26f), subtract Eq. (26h) from Egq.
(26g), and then add these two differences to obtain

wl? T 2. .2

29) 4\ <ndndsin(/an-(az)q

. 2 2
“n/2-0 sin” @fsin @ -cos 6

T R L L S A o

= FR,y=n/2(0 = FL, yan/a(® * FLy=_2/al® - Fr = 1/4(0).

RIS
From the solution of this integral equation, <mins sin(/all—ir}égpa

is obtained.

11
3. Determination of <'r]uzn1§sin(/g._u-[_a_1;)>a

PR
and <mpindsin(/aj;-faz)>0

Subtract Eq. (26b) from Eq. (26a); subtract Eq. (26d) from Eq. {26c),
and then subtract the latter difference frum the former:
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n/2 1 i

11 i 1
(30a) 4 (‘ [<mfmésin(/an-/ap)>y - <NB3mEsin(/ap-/as)
) V]

L2 2 2
sin ®(Z2cos 6-sin a)da

sin3 G\/sinza-cosz(B
= FL,Y:O(Q) - FR,Yzo(e) - F !Y TT/Z( ) ’Y TI'/Z( )

Subtract Eq. (26f) from Eq. (26e), subtract Eq. (26h) from Eq.
(26g), and then add these two differences:

w/2

1 1 4
(30b) 4 &v [<ninizsin(/an-/a1)>y + <nsmis sin(/ae-/2::)>]
\ /2-—6
. 4
sin a4 d&

3 —3 z
sin a@Jsin a-cos 0O

= FL,y=n/4(0) - FR, 1=n/4(0) + F y=_n/4{® - Fr,y - _7/4(0) .

Upon solution of these two integral equations, the bracketed quantities
in the integrands yield the desired averages.

11
. 2 2
4, Determination of <nymj;cos(/aj-/ay)

3 2
and <myMyz cos(/ap-/az)la

Subtract Eq. (26e) from Eq. (26g), subtract Eq. (26f) from Eq.
{26h), and then add these two differences:

m/2 1
Gl 4 g

ni3 cos(/ay-/anla + <NaMiz cos(/an-/az:)>l

2 2 2
sin @(2cos 6-sin a)da

3 o2 2
sin ¢Jsin &-cos ©

= FL,Y~'TT/4( ) - L NE TT/4( 0) + R,Y""TT/4( 0) - FR,Y:TT/4
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Now subtract Eq. (25f) from Eq. (25e) and multiply the result by
two; subtract from this Eq. (31a) to obtain the following '

w/2
(31b) 4 S [<Mnmizcos(/ayg-/ai)>y

/2-9

% % (8 4 0-8 2 Oc: 2 at s 4 4
. cos 0-8cos Os alda
~ <MzzMiz cos(fa-/az )] in sin Q)

sin® stinza— cos’®
2Fy:0,€:+1r/4(6) - 2Fy=0,§:_-n/4(6) "FL’Y:_TT//-}(G) + FL.y:‘n-/4(e)

—FR’Y:‘“/4(8) +FR, y=1r/4(e) ’

Thus upon sloving these last two integral equations, the two desired
averages are obtained from the bracketed terms in the integrands.

All the nine averages of Eq. (10) have been determined at this point,
This method employing the doppler strip therefore offers much more
complete information than that of the last section employing a range ring.

It should be noted that throughout this outline, only three different
forms of integrand have appeared in all of the integral equations., The
solution of these three integral equations is quite straightforward and
its existence is guaranteed, even with the radical in the denominator, As
a4 Mmatter 01 1aCl, ONEe Ul LIEeSE 1LULIID LCUULED LtV LuC W T AL~ AU Wk 4}.\,\,;'.,
integral equation, In any event, several books on integral equations de-
scribe methods for finding exact, closed-form solutions to all these
equations, However, in any practical application it seems much more
convenient to avoid such exact mathematical solutions in favor of con-
structing numerical solutions employing a computer. One obvious reason
for this is that the data found from experiment will be in the form of isolated
points and will not be representable in general by any simple mathematical
expression. Thus rather than be forced to plot data graphically and resort
to curve fitting, it seems much simpler to construct three programs for
their solutions and read the measured data into the machine as input points.
At any rate, the manner of solution chosen is better left to the user and to
the facilities available to him, Suffice it to say that the solutions do exist,

V. CONCLUSIONS

This report has discussed two experiments for measuring easily
definable planar backscattering averages from a large spherical surface,
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such as the moon or planets. Normal radar scattering from a surface
such as the moon yields information about the scattering properties of
the moon as a whole, and since radar antennas are not always directive
enough to illuminate only a small well-defined portion at a time, the
determination of local average backscattering lunar surface properties
is complicated. The two experiments overcome this difficulty and
enable one to determine nine separate backscattering averages, listed
in Eq. (10), as a function of the angle of incidence. These nine averages
can easily be made for a variety of observable sample surfaces of dif-
ferent roughness and composition on the Earth, so that these same
averages for the moon might be compared with those of a surface with
known characteristics, This should yield much comparative information
about the nature of the lunar surface,

The first experiment employs a narrow radar pulse which illumi-
nates only a small band, or range ring, on the moon at a time, The
second experiment uses a CW carrier and depends upon a spreading of
this discrete frequency when scattered, because of the rotation and
libration of the moon, The return at a given frequency near the carrier
corresponds to points on the moon with the same velocity toward or away
from the Earth, The first experiment is simpler in both measurement
and measured data reduction, but does not yield all of the nine averages
separately. The second experiment depends upon an exact knowledge of
the moon's angular velocity and its axis. Knowing these, the transmitting
and receiving antennas must be oriented accordingly, After measurement
as a function of frequency, several integral equations must be solved
in the reduction of measured data; this can all be done on a computer, how-
ever, eliminating much plotting and the graphical determination of areas
and slopes. In the long run, the second experiment yields every one of
the nine averages separately,

One would expect that all of these average backscattering properties
would decrease to nearly zero as the angle of incidence increased (i. e,,
moving away from normal incidence). One would also intuitively predict
that as the surface roughness becomes large in comparison to wavelength,
the averages containing a phase difference would all go to zero. Another
way of saying the same thing is that for a rough surface, one might expect
a random and therefore uniform distribution of phase differences from 0
to 2w, For a perfectly smooth surface at normal incidence, one expects
<m;;> to be zero, since a smooth surface does not change the direction of
incident polarization., However, as the roughness approaches the same
order of magnitude as wavelength, one expects <m;;> to become larger,
approaching some constant value (at the same angle of incidence), while
in turn he expects <> and <m;,> to decrease to some constant value.
Thus, one can verify these facts on a set of sample surfaces on the Earth
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and then attempt to deduce similar facts about surface roughness of the
moon by varying the wavelength. Frequency scaling can be used on the
sample surfaces on the Earth so that the same results can be applied
to surfaces with a much larger roughness scale.

Several significant points can be noted here. For one, the resulting
statistical data found in Eq. (17a, b, c,d) can all be found solely from
the employment of circular polarizing antennas; linear antennas need
not be employed at all. The reason that measurements involving linear
polarization are discussed at all is that in certain cases it may be desixr-
able or more convenient to use linear antennas. Also, it is significant
to note that this same information in Eq. (17a,b, ¢, d) from the range ring
experiment, which is found strictly by using circular polarizing antennas,
can also be found in the same identical form from the doppler strip experi-
ment when only circular polarizing antennas are used. This is evident
after comparing Eq. (16a,b, c) with Eq. (27a, b, c). Probably if one were
forced to choose a minimum.amount of statistical surface information,
that found in Eq. (17a, b, c,d) would be both the most important and the
simplest to obtain from the standpoint of the physical measurements
required. Any measurements involving strictly circular polarization are
always easy to make because they involve no special antenna orientations
either with respect to each other or with respect to the moon. Either
the range ring or the doppler strip experiment could then be used,
depending upon which is more convenient to set up.
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APPENDIX A

The return from a radar pulse incident upon the moon can be dis-
played on the oscilloscope as a function of time. In order to relate this
time to the angle of incidence, Q, on the moon (see Fig. 4), it is necessary
to consider the effect of pulse length in free space, L, to the area in a
given range ring, i.e., daRR - 27R?sinada. Obviously, as the pulse
length, L, becomes too large, the actual angle of @ varies significantly
inside the element d@; this reduces accuracy proportionately., The actual
angular increment, d@, is not a constant as the pulse of length L. moves
past the lunar surface, but is greatest at the portion of the moon hit
first., Since the signal returned from this part will be strongest, it
seems important to obtain as much undistorted, accurate information
from this forward portion as possible.

On the other hand, if the pulse is too small, besides system band-
width problems, the area illuminated on the moon will have dimensions
which are less than prominent surface features. It is doubtf{ul if this
situation would yield significant average backscattering data avbout the
overall surface,

If, for example, T = 10"3sec = pulse width in time, the pulse length
in free space, L, is approximately 200 miles. With an average lunar radius
of 1u80 miles, the maximum incidence angle increment, da, at the forward
region is about 35°, which is intolerable, With a pulse width of about
T=0.25X 10"%* sec, L 5 miles and da ~ 2°, which seem satisfactory
since a much smaller pulse length would be of the same order of magni-
tude as the surface roughness. With the latter pulse width, system band-
width requirements are of the order of 40 kc.

With a value of LL such as the latter, the portion of the return occuring
after the leading edge of the pulse has struck the forward edge of the moon
(but before the trailing edge has struck this part) is insignificant in compari-
son to the total length of the return pulse. Neglecting this portion, the area
of the range ring, dARR: 27R? 5in ada = 27RL, is a constant at all points
along the illuminated area ({rom purely geometrical considerations). There-
fore, from Eq. (13),

R RR
<ngf$a o <do Ty
The latter quantity is directly proportional to the average power in the

returned pulse, except that the power return is a function of time, whereas
the former is a function of angle. As long as the increment, da, is small,
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the relationship between angle of incidence, @, and time as observed
on an oscilloscope is

(t-t
(32) @ = cos ! [1 - EZZ?KL)]

or

t'—‘to+-2?R-[l-cosa],

where c = speed of light and t, = time L/c seconds after the start of
the pulse on the oscilloscope (this is the time that the middle of the pulse
strikes the moon).

With the above relationships, time can be converted to angle of
incidence, and vice-versa. Thus average power return can be plotted
directly in terms of angle of incidence in order that the quantities in
Eq. (17) can be computed.
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APPENDIX B

The following formulas are helpful in the algebraic reduction of
the integral equations:

(33) cos fcos'1 cos 0 = £oSs 0

1 sin @ sin Q

2
(34) sin {cos COS 6 } + jsin a-cosze
sin @ sin Q
- 9 _1]cos © _1]cos 0O
35 2 cos L l - sin? 5 :
(3°) cos { cos [sm o] 1 [ s sin O._J' sin Coé sin Q
. {Cos 2cos™} I:C(.)s 8] = — 12 [2 cos?0-sin?a]
sSin (1_ sin“ Q

(36) sin [Zcos—1 [C?S Oj” = 2 sin {cos-l [Cés GJ}
sin & sin O

X cos [Cos-l fcos 9-H|

o]
Lsm

. . _1 |cos © t2cos O T, 2

.. sin{ 2cos - = — sin"a-cos" 6 .
sin ¢ sin Q

(25a) y=0,¢=0

0 f . 2
.. cos Vv = cos = cos(v-{); sinv =1 ! Sin)a—COSZO-_- sin{v-{)

}

sin @ sin Q
cos(2v-1) = _l__[Zcos 0-sin’ al
sin? a
sin(2v -¢) = j—Z—COlLe jbm a-cos?0
sin Q
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Substitute these into Eq. (9).

. < S4 cos* p
e My-g,vTa = <NpPq ———
sin* a

-

3 3 2cos> 0 2 2
+ 2<*]11"112COS([ a“_-[an)>g, ——C%&:’—— fsin Q-cos ©

sin Q

F'

1 1
2 2 cosze
+ 2<nmezcos(/an-/axzla | (sin*a- cos?6)

S'Ln Cl
dcos’B , . 2 2
+ <np>g |22 2 (sin’ - cos 6
sin G
3
11 5 0 J
2 2 cos ) 2
t 2<mpnizcos(fa-/an)>q |5 — (sirf @- cos?6)
sin” ¢
: .2 2o 2
sin"@-cos“ 0
+ <Nz2>a ( 7y )
sin” @
{ 49
<nv-§,v>g = <M>g cos4
sin Q
% % Zcos 8
- 2<mm zCOS(fal [alz)a N E—— jsm a-cos’®
Q

) N
2 2 cos?® ., 2
+ 2<mifngs e cos(fap-{faz )q (sin“a- cos“9)
L-— sin*a

P> 4cos’0 , 2 2
t <Miz>q | ——— (sin"G-cos”0)
sin” Q
3
% % ZCOS 0 . 2 7
- 2<mgnizcos(fap-[azg)>y |——F— (sin a- cos 0)
‘ sin” @

. za ze)z
sin @ - cos
+ <nzz>a R
. 4
sin Q
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Fquation (25a) is obtained by using the above equations.

(25b). y=m/2,4=0
cos v =+ __1 Jsinla- cos’ 0 = cos(v-10);
sin Q
6
sinv = - C(_)S = sin(v - )
sin &
1
cos(2v-¢) = - > [2cos®6 - sinzaj;
sin @
sin{(v-{) = F Eﬂ)f_e_ Jsinza— cos® 0
sin“ Q

u sin‘a cosze)Z
S SMyogvTa T SMirg y J
sin Q

-

1

1 3
5 2cos © : z
2<nang cos(/ay-/ap) [——4— (sin?a- cosze)ZJ
sin Q

1 1 2
2 2 CcCOs ¢ L2 2
+ 2<nfimfcos(/an-/azq |— +— (sin" ¢ -cos”0)
sin @
2
4cos” 0 2
+ <M1’ a ——_——;———(sm a-cos”“0)
sin 4
33 Zcos39 z 7
2 ) :
- Z<ﬂzzﬂ1§COS(ga12—[a22)>a m— JSln a-cos” 0
‘o
< > COs
t <My 2 -
sin” Q

. 2
(smza- cos® 0)

< >4 _
Totv'a = <n“>a[

sin*a
Z 2 cos 2 2,2
+ 2<mymizcos(fan-{aply |5 (sin"a-cos"0)
sin” Q
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11 2
+ 2<nfnfcos(/a ayn-{az)ly [Cos (sm Q- cos 9)}

1

+ <N12>g [ sinzd— cos 8)}
1
2
T2

+2<11z2 cos(/agp-/az )y [ZCOS 0 J in®a-cos’6 ]

o)

sin4 a

By using these l%bove equations, Eq. (25b) is obtained. The same
results for <n,_, , >, and <n,_y % are obtained ify = -m/2 and { =
’ L]

(25c). y=0, ¢ =m/2
cos 6 ) 1 [z z
cos v = i, q = sin(v-l); sinv =4 sin Q Jsin @-cos 0= - cos(v-{)
cos(Zv—(,):LCgf—g fsinza-cosze
sin” Q

sin(2v-{) = - —si?l_E [Zcosze- sin®a]

2
cos“ 0

. u S 2y 2
o o <nv—§,,v>a = <nn>a{ (sin“Q- cos 9)]

sinta

- - .
E 2 cos
+ 2<n cos(/ay-/an)> (Zcos 6-sin’ a) jsm a-cos’®
1z i sm“a
11 ze
2 cos .2 2
- 2<myin 22cos(fajy- /azz (sin“a- cos”6)
[sin*a

+ <mp>g 1 (ZcosZ 8- sin’ O.)Z]

sin4 a
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1

1
- 2<T]22 ?‘Zcos[ ap-/a a;)> [

cos ©

2 .2 .
(2cos“B-sin” Q) jsmza—cosze
81n Q

2
cos S] L2
+ <ﬂzz>a[——— (sin“a - cos’® ):| .
c_ 4
sin Q

<N
v-L,v Q % |sinta

i cos’® 2 2
> = <mp> | (sin" a- cos B)j,

sin~ QG

11
2 2 cos © 2
2<nlfn1§'cos({all-/a12)>a[ " (Zcosze—sinza) ’sinza—cos 0}

11 2g
22 cos .
2<n121 g'cos fal -laz )> [ (smza- cosze)]

Sln a

+

<N1z” g [‘ 1 (2cos 20- sin? Q)?
Lsin‘d

1 1
2 2 cos © 2 L2 2 z
+ 2<n5m ;COS(/a1z-/azz)>a (2cos” 6-sin Q) jsm a-cos O
e sin*Q
cos® 0
t <Mz (sin?a- cos?6)

sin Q

The same expressions for <, _t >% and n é,v>é are obtained if
y=0and { = m/2ory=mw/2and { = /Z These expresswns can then be
substituted into Eq. (23) to give Eqg. (25c).

(25d) Y:—-n'/4, g:-n'/l

o2 2
cos v = sin{v-{) = 1 (cos eiFjsm a-cos O )
N2 X sin @
. 1 j .2 24
sinv = - cos(v-{) = cos 4 sin"a-cos
N2 A sina
. 2 0
sin(2v-{) = E__c_ozs__ Jsinza—cosze
sin” Q
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(ZcosZ - sin’ a)q

< >3 len. >
. nv-g,v a =g Mrg

|
sin*a 4
11 2 .2 .2
5 3 cos 9(2cos8 " 0-sin Cl)jsm a-cos’®
+ 2<niimpz cos{{an-Jfap>y "
sin Q

1 i 3 (2cos’6- sin’ @)?
- 5 <M1z cos(fan-{a;)lq 1

sin Q

4

2 2 2
cos O(sin a-cos 6)
sin” @

1

1
-2 <naM 3cos([a]g-La_2£)>a {

2 2 j F 2
cos 8(2cos 6-sin @)sin @-cos 9}

sint*a

2 2 .2
1 - .
FRLIPSEN {(2cos B-sin Q)
4 a "
| sin’ @
2 .2 _\2
g _1 {2cos®“0-sin“ Q)
ogvTe T sin*a
% % cos G(Zcosze-sinza) Jsinza-coszé)
- 2<mmizcos(/aj-/ap)y .
sin @
l 1 2cos’6-sin’a
- 5 <néng cos([ay-{azPy | N
4
sin* Q@
2 2 2
+ 4<Tllz>a cos O(sin"a-cos”6)
sin‘d

.~

2 2 2 2
cos §2cos 6-sin Q) Jsin a-cos O

’ 11
2 2
+ 2 <11 zcos(‘al —!azz/

L sin* Q

1 (ZcosZ 6-sin’ a)®
-— >
+ 4<TIZZ a " °
sin®*Q

The same expressions for <nv-§,,v>1cll and <nv_r:,v>é are obtained if

y =+m/4 and { = +n/2, These expressions are then substituted into Eq.
(23) to give Eq. (25d).
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(25€) y =0, {=m/4

cos O 1

. . T2
<. COSV = a o sinv =+ sina (sin a-cos’o
1 S 2
cos(v-{) = cos D F Jsin"u-cos 0] ;
N2 sin @
: _ 1 .2 2~
sin(v-¢) = __* cos O+ jsm Q-cos“0
N2 sin G
C 1 [ 4 .2 T2 AN
sin(2v-{) = ) (2cos B-sin q) + 2cos Ojsm a-cos 0
N2+ sin?a

. <n >0 <ny > cos’0 sinza-Zcos Ofsinf@-cos?0
. . v-{,v" « Mg =222 -~ .

2sirt @
;s cos®O 2 2 sin‘a 3 3
+ <nimizcos(/an-/an)>y '“4—-[4COS 6-3sin“a + ‘ [sin“(‘x-cos 0]
sin” Q cos U
11 0
2 2 c . ;
+ <M11M2; COS(Zau_-/_;d_z_z_)>a 08 T (2cod O-sirt Q) jsmza— cos?0
sin” Q
1 1 2 2 )
+5 My ——— [SiIl‘O- + 2cos 2cos 0O-sin a) jsmza- cosZO]
sinta
% % i 4 2 2 4
+<T]zzT]13COS(/'d1z-[az | [_4COS 0+5cos Osin a- sin @
[y T-3 —Lea’ 0 o4
sintu
2 )
+ cos Osin"a /sm& - Coszﬁ]
2 2 2
+ <My - [sin @-cos U] [sin a+ Zcosojsinzu—coszo ]
2sinta

£ cos?®0 .2 :
<nv_§’v>a: <mi>q =8 7 [sm 4+ 2cos stmz(l—coszo}

2sinta
+ < :, 2 (L cos®0 1 ‘0-3sin’y sinfu lsinz'l cos?0
cos{/aj-/ap)> tCcOs Y- L - [
LISWIP 11} /__Lz__)a sint 1 cos 0
. . , .
2 2 i JOSs 0 2 o 2 a2 . 2
- <M1iMz2 Cos((dn—!a§;)>(1 m(Zcos O-sin” ) jbm 4-cos” 0
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1 1 4
t3 <N12>g [sin @ -2cos O(ZCOSZO—sinZ Q) \Einzo.- cos’ 8 ]
sin*a
3 3 1 4 2 2
+<nAgni} cos(/an-/a:)% — I:—4cos 8+ Scos“Bsin“
sin” @

. 4 .2 . 2
- sin @ - cos B sin aJsm C!-cosze ]

1 .2 . .
+ <ngzz> ToAG (sin” @-cos®6) * [smza-2cos 8 jsmza—cosze ]

The same results can be arrived at for y = -m/4 and { = -n/4.

Upon substitution of the above expressions into Eq. (23), Eq. (25e) is
obtained.

(25f1) y=0,¢=-n/4

cos 0 1

. .2 2
cos v = ¢ sinv = ¢+ fsm G-cos” 0

cos(v-{) = ! [cos 0+ fsinza- cos 29] ;
N2 - sin @

1
sin{v-{) = -'\]2——.-—& [—cos 0+ [sinza- cosze]
* sin

sin(2v-{) = __ 1 [—(ZcosZ 0-sin’a) + 2cos 0 Eir?ra— cosze]
N2+ sin2a

]
. < Su cos
LY T]

=<n>. T [sinza + 2cos 6sin?a- cos?6
v-{,v Q @ 2ginta

1 1
zZ 2 2 2 .2
+ <numgzcos(/an-/ a1z)>a2_9’7_e_ [—4cos 0+ 3 sin"a
sin®*aQ

sinz a

sin° 0 - cos“HB
cos O

|-

1 cos 0 2y .. 2 .2 2
- <mfn.2cos(fay-/a:)>y g (2cos”B-8in” Q) Jsm @-cos" 9
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1 1 ,
= <M —g— [sin4 a-2cos 2cos? U-sin® G)/ sin? a - cos? 0]
2 sin” Q

1 %
sin4 a

11
+ <ngmfcos(/ap-/az )y

[4 cost 0- 5cos? 0sin? a+ sin* A+ cosUsin? @ Jsin? a- coszo-l

1
+ <P g — ‘:sin2 a- cos? 0] *
2sin* @

[sinz a- 2cos OEinz a-cos? O] .

2
cos” 0 {sinZ a-2cos0 Jsinz a- cos? OJ
a -

£ _
<My_g,v”a = <Mmra :

2sin

1 1

1 1 2
+ <n1fn1§cos([a”—[au)>af_9_s__q [—4c0320 + 3sin® a
sint O

-2
sin” a R
- /smZ a- cos? 0]

cos 0
1 1 0
2 2 cos 2 .2 -2 z
< 3 - > 0- Q- 0
+ nnnZZCOD([‘gL/azz_) a m(Zcos sin OL)fsm cos
+ 5 <My {Sin4d+ 2cos O(Zcoszo—sinzo)j sin?a - cos? 0]
sint Q
1 1 1
22
+ <ngmizcos(fap-{azlPo ——— *
sint Q

20 - 2, . 2 . 4 .. 2 T2 2
[4cos 0-5co0s“0sin“ a+ sin O-cos ©sin“a Jsin Q- cos OJ

+ <Nnzz”a inza—cosz()] ¥ [sinza+ 2cos ¥ jsinza—coszol o

—_— S
2sintq t

The same results could have been obtained for y = m/4 and { = n/4,
Upon substitution of the above expressions into Eq. (23), Eq. (25f) is

obtained,
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(26a,b) y=0
.. cosv-= C?Se ; o’e sinv =+ 1 [sinfa-cos?0
sin Q sin a "
. 2cos © .
sin 2v = + ——EZ—S— Jsmza-cosze
sin“ ¢

Substitute these into Eqs. (4) and (5).

2
<ng, >1& _ l<7]11> cos“6
Rv 2 sin?a
11
+ <n2nl cos 0 J >
minizcos(/an-/ap)o — sin?Q - cos?0
sin

cos B

- lsinza-cosze
sinZ

1 1 2
cos?d
+ <nfén zzs1n(z an- Zal;)> ==

sin®a

(sin®a- cos?6)

sin®Q

11
+ <mind sin(/ay-/az )iy cos8 Jsm Q-cos?f

sin2 Q

(sin®a- cos?6)

1
+ = <M>g + 1 <Maq
2 2 sin® o

[

1

-<Tlli 2zCOs([ aj-/apiy cos © Jsm a-cos?H

sin®Q
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P
- <My3M %cos(_L [ az:

(26a, b)

cont.

1 1
£ <ndndsin(/an-/an)>y

1 1
+ <nBn ésin(g alz‘/azz)>u

| —

+ <Tlnﬂzz sin(/aj-[{az )y

cos U U

512

jsmla - cos2l

2
cos 0O

sin¢ Q

. 2
(smza— cos” U)

sin®a

cos 0O

— Jsin?a- cos?0
sin“Q

1 1 (sina - cos?V)
+ - < > + - < -
> <M’y 15 <Mz g
Upon substitution of these results into Eq. (23), Eq. (Z6a,
(26c,d) y=m/2
0
. cos v =_-t—_—l——- lsinZO.—C0520 ;  sin v =—C(.)S
¢ sin Q sin @
- 8]
sin 2v = + 2cos sin?a- cos?0
sin?

1 s 2o 2
<T]11>a (Sln Q coOs 6)

R sin® a
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cos O

— Jsinza- cos?0
sin® @

cos U )

— Jsuxza-cosz[)
sin2 &

. 2
(smZ a-cos V)

sinZ &

cos?v

Sinza

cos 0

sinZ Q

1 1
t 3 <M’g t 5 <M

b) is obtained,

2
cos” U

sin? a



.2 2
(26c, Q) <nL >4 - % < (sin” @ - cos”0)
cont, R sin?

1 1
2.2 cos © .
+ <numzcos(/fay-/ap)% > Jsmza-cosze
sin% Q

11
3 3z cos ©
2 2 .
+ <Mzz2TMiz COS(( aje-/ a22)>(1 2 g JS‘I.II2 Q-cos2b
n
1 1
2 sin®a- cos?6
+< ]55111(‘ ll-‘al )> ( )
sin2 Q

1

i 2
2.2 . cos“®
x <T|2 N2 SIn(l a;z-/a22)>a _—
sinz

1 1
2 2 . cos O :
+ <mumzz sin(/ay-{az)lq fsmza- cos2b
02
sin‘a

1
+ '2‘ <T]12 a + -Zl <n22>a
Upon substitution of the above into Eq. (23), Eq. (26c,d) result,

(268’ f) Y = 1T/4:

cos v = ___l__ (cos 0+ Jsinza-cosze);
N2+ sin @
sinv = __ L (-cos Bijsinza-cosze)
N2+ sin a
sin 2v = - ! [ 2cos?8- sinZq]
sinZ Q
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1
Lo <nr > =7 <M, ——— [ sin*a+2cos ® /sinza—coszU]

1 1
1 __ 2 32 e
- _Z<nnn12cos(l§ﬂ—{an)>a g [2c0s?0- sin®u]
1y !
- = <nfmiscos({ai-/anlo — 5 [2cos 29~ sin® q]
sin® Q
1 i
nZnd - >
hd E nnizsin (fay-/2a3)> [sm O.+Zcos(3jsm a-cos 0 ]
sina
1 11
— 2 2 . .
t3 <Mj1Mz2sin(/ au-,/azz)>a P [2cos?6- sin? q]
1 3.3 1 . :
+ 5 <n222n123in(/aiz-/azz)>(l [stOL- 2cos UJ sin? - cos?0]
sin®Q
L ocn> L L in’ 2 2
* 5 Mo ¥ 7 <N’y cza [sin” @ + 2cos 9/s1n o-cos® 0].
l 1 .2 -2 2
<nLv>(1 = 7<Mrg — [sin®*a- 2cos O,Isu; Q- cos?0]
R sinz Q
1 11
- E<n121111?2COS(z an-/aP [2cos?0- sin?qa]
sin” Q
1 11
- = <myémifcos(fap-/a az)>y [ZcosZO_sinZOL]
2 sin?a
1 11 1 > >
i‘z' 21 22511’1[31 Lalz [sinzOchosOJsin a-cos“ 0]
sinZa
1 __z 2 1
T = <miimassin(/an-faz)% [2cos20- sin?q]
2 .2
sin”
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b_ 3.3 . 4 :
(26e, f) + > <nZniz sin(faj-/az )0y 12 [sinfa+2cos elsinza - cos?§}

cont, sin” Q

1 1
+ -Z <n12>q + Z<n22>a

sin“ Q@
(26g,h) y=-7/4
cos v = 1 (cos G:J sinZ @ - coszB);
N2 sin @
sinv = 1 (cos eiJsinza- cos?0)
N2 sin @
sin 2v = + 1 [2cos?6- sin?q]
sin’a

[sin? - 2cos 0 \sin? G- cos2 6]

° u 1
o o <My > +—=<Thrg
R @ 4 sin® a

[2cos?6- sin?q]

1 1
1 2 2
+ E<ﬂumz cos{fay;-/a- )%

sin“ Q

1 1

1 1
_2_<'r]za fcos([ aj-/az’a

[ 2cos?6- sin®q]

sin? G

[Zcos 8- sin @

1, 11
if 1fzzzsm(LuL3_2_)>

1
B sin(/ay-/ap)a [sin?a-2cos 6 {sin?a- cos?8]

=3
™=
cas

1 l
1
—<T]zz’11.z sin(/aj-/az)lq [sm a+ 2cos 6 Jsm Q- cos 6]

N

1
sin?Q

1 1 .
+ > N>y + 21.<r]zz>a [s1nza+ 2cos © lsinza— cos® 9]
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(26g,h)  <ng >é = L <My [sin?a+2cos U Jsinta- cos?0
cont, rRY sin‘Q
1__ 5. 3 1
—<néngcos(/a;;-/an)* 2cos?U- sin?a
+ 5 niiniz (/ 11 12)% T [ ]

1 1 1 1
+ —<T]zgar11§cos({ az-/ az;)>q [ZCOSZU- sin® af

2 sin®Q

1

11

1 s 2 .

i~2-<n111']zz sin(/aiz-/az2)a P [2cos?0- sin®aj
sin Q

1 1
13 5. _ ,
+ =<mimZsin({ay-/ap)y [sina+2cos 0 Ismza-coszoj

]

1 i

1 2 2
+ §<”7—2"‘12 sin(faj;-/a:3)>q [sinZ a-2cosU j sin®a - coszUJ

1 1 1 2 2 2
+ =<np> .+ = <n,> sin“a-2cos0 sin“a-cos”0].
2 SThz” g 2 N22" cin?a [ J

The above two quantities are then substituted in Eq. (23) to give
Eqgs. (26g) and (26h),
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