197 research outputs found

    Absorption spectra of Fe L-lines in Seyfert 1 galaxies

    Full text link
    Absorption L-lines of iron ions are observed, in absorption, in spectra of Seyfert 1 galaxies by the new generation of X-ray satellites: Chandra (NASA) and XMM-Newton (ESA). Lines associated to Fe23+ to Fe17+ are well resolved. Whereas, those corresponding to Fe16+ to Fe6+ are unresolved. Forbidden transitions of the Fe16+ to Fe6+ ions were previously observed, for the same objects, in the visible and infra-red regions, showing that the plasma had a low density. To interpret X-ray, visible and infra-red data, astrophysical models assume an extended absorbing medium of very low density surrounding an intense X-ray source. We have calculated atomic data (wavelengths, radiative and autoionization rates) for n=2 to n'=3-4 transitions and used them to construct refined synthetic spectra of the unresolved part of the L-line spectra.Comment: 17 pages, 5 figures, Journal of Quantitative Spectroscopy and Radiative Transfer, in pres

    Highly Ionized Potassium Lines in Solar X-ray Spectra and the Abundance of Potassium

    Full text link
    The abundance of potassium is derived from X-ray lines observed during flares by the RESIK instrument on the solar mission CORONAS-F between 3.53 A and 3.57 A. The lines include those emitted by He-like K and Li-like K dielectronic satellites, which have been synthesized using the CHIANTI atomic code and newly calculated atomic data. There is good agreement of observed and synthesized spectra, and the theoretical behavior of the spectra with varying temperature estimated from the ratio of the two GOES channels is correctly predicted. The observed fluxes of the He-like K resonance line per unit emission measure gives log A(K) = 5.86 (on a scale log A(H) = 12), with a total range of a factor 2.9. This is higher than photospheric abundance estimates by a factor 5.5, a slightly greater enhancement than for other elements with first ionization potential (FIP) less than about 10 eV. There is, then, the possibility that enrichment of low-FIP elements in coronal plasmas depends weakly on the value of the FIP which for K is extremely low (4.34 eV). Our work also suggests that fractionation of elements to form the FIP effect occurs in the low chromosphere rather than higher up, as in some models.Comment: 14 pages, 3 figure

    X-Ray Photoabsorption in KLL Resonances of O VI And Abundance Analysis

    Get PDF
    It is shown that photoabsorption via autoionizing resonances may be appreciable and used for abundance analysis. Analogous to spectral lines, the `resonance oscillator strength' f_r may be defined and evaluated in terms of the differential oscillator strength df/d(epsilon) that relates bound and continuum absorption. X-ray photoabsorption in KLL (1s2s2p) resonances of O VI is investigated using highly resolved relativistic photoionization cross sections with fine structure. It is found that f_r is comparable to that for UV dipole transition in O VI (2s - 2p) and the X-ray (1s^2 ^1S_0 - 1s2p ^1P^o_1) transition in O VII. The dominant O VI(KLL) components lie at 22.05 and 21.87 Angstroms. These predicted absorption features should be detectable by the Chandra X-Ray Observatory (CXO) and the X-Ray Multi-Mirror Mission (XMM). The combined UV/X-ray spectra of O VI/O VII should yield valuable information on the ionization structure and abundances in sources such as the `warm absorber' region of active galactic nuclei and the hot intergalactic medium. Some general implications of resonant photoabsorption are addressed.Comment: Astrophys. J. Letters (in press), 9 pages, 3 figure

    Line ratios for Helium-like ions: Applications to collision-dominated plasmas

    Get PDF
    The line ratios R and G of the three main lines of He-like ions (triplet: resonance, intercombination, forbidden lines) are calculated for CV, NVI, OVII, NeIX, MgXI, and SiXIII. These ratios can be used to derive electron density n_e and temperature T_e of hot late-type stellar coronae and O, B stars from high-resolution spectra obtained with Chandra (LETGS, HETGS) and XMM-Newton (RGS). All excitation and radiative processes between the levels and the effect of upper-level cascades from collisional electronic excitation and from dielectronic and radiative recombination have been considered. When possible the best experimental values for radiative transition probabilities are used. For the higher-Z ions (i.e. NeIX, MgXI, SiXIII) possible contributions from blended dielectronic satellite lines to each line of the triplets were included in the calculations of the line ratios R and G for four specific spectral resolutions: RGS, LETGS, HETGS-MEG, HETGS-HEG. The influence of an external stellar radiation field on the coupling of the 2^3S (upper level of the forbidden line) and 2^3P levels (upper levels of the intercombination lines) is taken into account. This process is mainly important for the lower-Z ions (i.e. CV, NVI, OVII) at moderate radiation temperature (T_rad). These improved calculations were done for plasmas in collisional ionization equilibrium, but will be later extended to photo-ionized plasmas and to transient ionization plasmas. The values for R and G are given in extensive tables, for a large range of parameters, which could be used directly to compare to the observations

    Helium-like ions as powerful X-ray plasma diagnostics

    Get PDF
    We revisited the calculations of the ratios of the Helium-like ion ``triplet'' (resonance, intercombination, and forbidden lines) for Z=6 to 14 (C V, N VI, O VII, Ne IX, Mg XI, Si XIII) in order to provide temperature, density and ionization diagnostics for the new high-resolution spectroscopic data of Chandra and XMM-Newton. Comparing to earlier computations, collisional rates are updated and the best experimental values for radiative transition probabilities are used. The influence of an external radiation field (photo-excitation) and the contribution from unresolved dielectronic satellite lines to the line ratios are discussed. Collision-dominated plasmas (e.g. stellar coronae), photo-ionized plasmas (e.g. AGNs) or transient plasmas (e.g. SNRs) are considered.Comment: To appear in Proc. of "X-ray astronomy 2000",(Palermo Sep. 2000), Eds. R. Giacconi, L. Stella, S. Serio, ASP Conf. Series, in press (6 pages, 1 figure). This "replaced" version includes the newpasp.sty corresponding to this conferenc

    UV and X-ray Spectral Lines of FeXXIII Ion for Plasma Diagnostics

    Full text link
    We have calculated X-ray and UV spectra of Be-like Fe (FeXXIII) ion in collisional-radiative model including all fine-structure transitions among the 2s^2, 2s2p, 2p^2, 2snl, and 2pnl levels where n=3 and 4, adopting data for the collision strengths by Zhang & Sampson (1992) and by Sampson, Goett, & Clark (1984). Some line intensity ratios can be used for the temperature diagnostics. We show 5 ratios in UV region and 9 ratios in X-ray region as a function of electron temperature and density at 0.3keV < T_e < 10keV and ne=11025cm3n_e = 1 - 10^{25} cm^{-3}. The effect of cascade in these line ratios and in the level population densities are discussed.Comment: LaTeX, 18 pages, 10 Postscript figures. To appear in Physica Script

    Electron-Ion Recombination Rate Coefficients and Photoionization Cross Sections for Astrophysically Abundant Elements. V. Relativistic calculations for Fe XXIV and Fe XXV for X-ray modeling

    Get PDF
    Photoionization and recombination cross sections and rate coefficients are calculated for Li-like Fe XXIV and He-like Fe XXV using the Breit-Pauli R-matrix (BPRM) method. A complete set of total and level-specific parameters is obtained to enable X-ray photoionization and spectral modeling. The ab initio calculations for the unified (e + ion) recombination rate coefficients include both the non-resonant and the resonant recombination (radiative and di-electronic recombination, RR and DR, respectively) for (e + Fe XXV) -> Fe XXIV and (e + Fe XXVI) -> Fe XXV. The level specific rates are computed for all fine structure levels up to n = 10, enabling accurate computation of recombination-cascade matrices and effective rates for the X-ray lines. The total recombination rate coefficients for both Fe XXIV and Fe XXV differ considerably, by several factors, from the sum of RR and DR rates currently used to compute ionization fractions in astrophysical models. As the photoionization/recombination calculations are carried out using an identical eigenfunction expansion, the cross sections for both processes are theoretically self-consistent; the overall uncertainty is estimated to be about 10-20%. All data for Fe XXIV and Fe XXV (and also for H-like Fe XXVI, included for completeness) are available electronically.Comment: 31 pages, 10fug

    Enhanced dielectronic recombination of lithium-like Ti19+ ions in external ExB fields

    Full text link
    Dielectronic recombination(DR) of lithium-like Ti19+(1s2 2s) ions via 2s->2p core excitations has been measured at the Heidelberg heavy ion storage ring TSR. We find that not only external electric fields (0 <= Ey <= 280 V/cm) but also crossed magnetic fields (30 mT <= Bz <= 80 mT) influence the DR via high-n (2p_j nl)-Rydberg resonances. This result confirms our previous finding for isoelectronic Cl14+ ions [Bartsch T et al, PRL 82, 3779 (1999)] that experimentally established the sensitivity of DR to ExB fields. In the present investigation the larger 2p_{1/2}-2p_{3/2} fine structure splitting of Ti19+ allowed us to study separately the influence of external fields via the two series of Rydberg DR resonances attached to the 2s -> 2p_{1/2} and 2s -> 2p_{3/2} excitations of the Li-like core, extracting initial slopes and saturation fields of the enhancement. We find that for Ey > 80 V/cm the field induced enhancement is about 1.8 times stronger for the 2p_{3/2} series than for the 2p_{1/2} series.Comment: 10 pages, 3 figures, to be published in Journal of Physics B, see also http://www.strz.uni-giessen.de/~k
    corecore