415 research outputs found

    An innovative concept of use of redox-active electrolyte in asymmetric capacitor based on MWCNTs/MnO(2) and Fe(2)O(3) thin films

    Get PDF
    In present investigation, we have prepared a nanocomposites of highly porous MnO2 spongy balls and multi-walled carbon nanotubes (MWCNTs) in thin film form and tested in novel redox-active electrolyte (K3[Fe(CN)6] doped aqueous Na2SO4) for supercapacitor application. Briefly, MWCNTs were deposited on stainless steel substrate by "dip and dry" method followed by electrodeposition of MnO2 spongy balls. Further, the supercapacitive properties of these hybrid thin films were evaluated in hybrid electrolyte ((K3[Fe(CN)6 doped aqueous Na2SO4). Thus, this is the first proof-of-design where redox-active electrolyte is applied to MWCNTs/MnO2 hybrid thin films. Impressively, the MWCNTs/MnO2 hybrid film showed a significant improvement in electrochemical performance with maximum specific capacitance of 1012 Fg-1 at 2 mA cm-2 current density in redox-active electrolyte, which is 1.5-fold higher than that of conventional electrolyte (Na2SO4). Further, asymmetric capacitor based on MWCNTs/MnO2 hybrid film as positive and Fe2O3 thin film as negative electrode was fabricated and tested in redox-active electrolytes. Strikingly, MWCNTs/MnO2//Fe2O3 asymmetric cell showed an excellent supercapacitive performance with maximum specific capacitance of 226 Fg-1 and specific energy of 54.39 Wh kg-1 at specific power of 667 Wkg-1. Strikingly, actual practical demonstration shows lightning of 567 red LEDs suggesting "ready-to sell" product for industries.Nilesh R. Chodankar, Deepak P. Dubal, Abhishek C. Lokhande, Amar M. Patil, Jin H. Kim, Chandrakant D. Lokhand

    Apparent horizons in simplicial Brill wave initial data

    Get PDF
    We construct initial data for a particular class of Brill wave metrics using Regge calculus, and compare the results to a corresponding continuum solution, finding excellent agreement. We then search for trapped surfaces in both sets of initial data, and provide an independent verification of the existence of an apparent horizon once a critical gravitational wave amplitude is passed. Our estimate of this critical value, using both the Regge and continuum solutions, supports other recent findings.Comment: 7 pages, 6 EPS figures, LaTeX 2e. Submitted to Class. Quant. Gra

    La gestión del ingreso y la permanencia en la universidad como fortalecimiento del respeto a los derechos humanos y a las libertades fundamentales.

    Get PDF
    El artículo 26 de la Declaración Universal de los Derechos Humanos, establece que toda persona tiene derecho a la educación ¿cómo se transforma esa declaración en realidad en el nivel universitario? Democratizar el acceso y la permanencia en los estudios superiores, involucra un compromiso que aúna la política educativa institucional con la concepción de un proyecto pedagógico que genera condiciones para garantizar que las puertas abiertas de la universidad no se vuelvan giratorias . En tal sentido, implica reconocer las complejas situaciones que se presentan año a año en relación con las competencias académicas de los estudiantes, el imaginario docente sobre lo que deberían saber , lo que traen de la secundaria y las dificultades reales de los estudiantes -no circunscriptas solo a lo académico- si bien es el principal espacio donde se evidencia. Conocer quiénes son, qué piensan sobre sus fortalezas y sus debilidades para insertarse como alumno universitario, qué esperan de una tutoría, cuáles son sus hábitos de estudio, etc. son algunas de las cuestiones que, entre otro conjunto de iniciativas, el equipo del Programa de Tutorías para los ingresantes a la Carrera de Ingeniería en Alimentos intentó responder y en esta oportunidad, compartirlo con los colegas de América Latina

    Geodesic Deviation in Regge Calculus

    Get PDF
    Geodesic deviation is the most basic manifestation of the influence of gravitational fields on matter. We investigate geodesic deviation within the framework of Regge calculus, and compare the results with the continuous formulation of general relativity on two different levels. We show that the continuum and simplicial descriptions coincide when the cumulative effect of the Regge contributions over an infinitesimal element of area is considered. This comparison provides a quantitative relation between the curvature of the continuous description and the deficit angles of Regge calculus. The results presented might also be of help in developing generic ways of including matter terms in the Regge equations.Comment: 9 pages. Latex 2e with 5 EPS figures. Submitted to CQ

    Cauchy-characteristic Evolution of Einstein-Klein-Gordon Systems

    Full text link
    A Cauchy-characteristic initial value problem for the Einstein-Klein-Gordon system with spherical symmetry is presented. Initial data are specified on the union of a space-like and null hypersurface. The development of the data is obtained with the combination of a constrained Cauchy evolution in the interior domain and a characteristic evolution in the exterior, asymptotically flat region. The matching interface between the space-like and characteristic foliations is constructed by imposing continuity conditions on metric, extrinsic curvature and scalar field variables, ensuring smoothness across the matching surface. The accuracy of the method is established for all ranges of M/RM/R, most notably, with a detailed comparison of invariant observables against reference solutions obtained with a calibrated, global, null algorithm.Comment: Submitted to Phys. Rev. D, 16 pages, revtex, 7 figures available at http://nr.astro.psu.edu:8080/preprints.htm

    Molybdenum nitride nanocrystals anchored on phosphorus-incorporated carbon fabric as a negative electrode for high-performance asymmetric pseudocapacitor

    Get PDF
    Pseudocapacitors hold great promise to provide high energy-storing capacity; however, their capacitances are still far below their theoretical values and they deliver much lower power than the traditional electric double-layer capacitors due to poor ionic accessibility. Here, we have engineered MoN nanoparticles as pseudocapacitive material on phosphorus-incorporated carbon fabric with enhanced ionic affinity and thermodynamic stability. This nanocomposite boosts surface redox kinetics, leading to pseudocapacitance of 400 mF/cm² (2-fold higher than that of molybdenum nitride-based electrodes) with rapid charge-discharge rates. Density functional theory simulations are used to explain the origin of the good performance of MoN@P-CF in proton-based aqueous electrolytes. Finally, an all-pseudocapacitive solid-state asymmetric cell was assembled using MoN@P-CF and RuO₂ (RuO₂@CF) as negative and positive electrodes, respectively, which delivered good energy density with low relaxation time constant (τ₀) of 13 ms (significantly lower than that of carbon-based supercapacitors).Deepak P. Dubal, Safwat Abdel-Azeim, Nilesh R. Chodankar, and Young-Kyu Ha

    Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors

    Get PDF
    Pseudocapacitive materials are highly capable to achieve high energy density integrated with high power electrostatic capacitive materials. However, finding a suitable electrostatic capacitive material to integrate with pseudocapacitive material in order to achieve high energy density with good rate capability is still a challenge. Herein, we are providing a novel synthetic approach starting from the synthesis of polypyrrole nanotubes (PPy-NTs) and ending up at the carbonization of PPy-NTs to obtain N-doped carbon nanotubes (N-CNTs). With highly porous nature of PPy-NTs and great graphitic texture with copious heteroatom functionalities, N-CNTs significantly promoted the faradic pseudo-capacitors, demonstrating high single-electrode capacitance over 332 F/g and 228 F/g in 1 M HSO aqueous solution. Further, a novel asymmetric supercapacitor with PPy-NTs as positive and N-CNTs as negative electrode has been fabricated. This PPy-NTs//N-CNTs cell effectively provides high operation voltage (1.4 V) and hence high energy density over 28.95 W h/kg (0.41 mW h/cm) with a high power density of 7.75 kW/kg (113 mW/cm) and cyclic stability of 89.98% after 2000 cycles

    Reaction mechanism and characteristics of T_{20} in d + ^3He backward elastic scattering at intermediate energies

    Get PDF
    For backward elastic scattering of deuterons by ^3He, cross sections \sigma and tensor analyzing power T_{20} are measured at E_d=140-270 MeV. The data are analyzed by the PWIA and by the general formula which includes virtual excitations of other channels, with the assumption of the proton transfer from ^3He to the deuteron. Using ^3He wave functions calculated by the Faddeev equation, the PWIA describes global features of the experimental data, while the virtual excitation effects are important for quantitative fits to the T_{20} data. Theoretical predictions on T_{20}, K_y^y (polarization transfer coefficient) and C_{yy} (spin correlation coefficient) are provided up to GeV energies.Comment: REVTEX+epsfig, 17 pages including 6 eps figs, to be published in Phys. Rev.

    Proton--induced deuteron breakup at GeV energies with forward emission of a fast proton pair

    Get PDF
    A study of the deuteron breakup reaction pd(pp)npd \to (pp)n with forward emission of a fast proton pair with small excitation energy Epp<E_{pp}< 3 MeV has been performed at the ANKE spectrometer at COSY--J\"ulich. An exclusive measurement was carried out at six proton--beam energies Tp=T_p=~0.6,~0.7,~0.8,~0.95,~1.35, and 1.9 GeV by reconstructing the momenta of the two protons. The differential cross section of the breakup reaction, averaged up to 88^{\circ} over the cm polar angle of the total momentum of the pppp pairs, has been obtained. Since the kinematics of this process is quite similar to that of backward elastic pddppd \to dp scattering, the results are compared to calculations based on a theoretical model previously applied to the pddppd \to dp process.Comment: 17 pages including 6 figures and 1 table v2: minor changes; v3: minor change of author list; v4: changes in accordance with referee remark

    Relativistic hydrodynamics on spacelike and null surfaces: Formalism and computations of spherically symmetric spacetimes

    Full text link
    We introduce a formulation of Eulerian general relativistic hydrodynamics which is applicable for (perfect) fluid data prescribed on either spacelike or null hypersurfaces. Simple explicit expressions for the characteristic speeds and fields are derived in the general case. A complete implementation of the formalism is developed in the case of spherical symmetry. The algorithm is tested in a number of different situations, predisposing for a range of possible applications. We consider the Riemann problem for a polytropic gas, with initial data given on a retarded/advanced time slice of Minkowski spacetime. We compute perfect fluid accretion onto a Schwarzschild black hole spacetime using ingoing null Eddington-Finkelstein coordinates. Tests of fluid evolution on dynamic background include constant density and TOV stars sliced along the radial null cones. Finally, we consider the accretion of self-gravitating matter onto a central black hole and the ensuing increase in the mass of the black hole horizon.Comment: 23 pages, 13 figures, submitted to Phys. Rev.
    corecore