101 research outputs found

    Fast Scalable Construction of (Minimal Perfect Hash) Functions

    Full text link
    Recent advances in random linear systems on finite fields have paved the way for the construction of constant-time data structures representing static functions and minimal perfect hash functions using less space with respect to existing techniques. The main obstruction for any practical application of these results is the cubic-time Gaussian elimination required to solve these linear systems: despite they can be made very small, the computation is still too slow to be feasible. In this paper we describe in detail a number of heuristics and programming techniques to speed up the resolution of these systems by several orders of magnitude, making the overall construction competitive with the standard and widely used MWHC technique, which is based on hypergraph peeling. In particular, we introduce broadword programming techniques for fast equation manipulation and a lazy Gaussian elimination algorithm. We also describe a number of technical improvements to the data structure which further reduce space usage and improve lookup speed. Our implementation of these techniques yields a minimal perfect hash function data structure occupying 2.24 bits per element, compared to 2.68 for MWHC-based ones, and a static function data structure which reduces the multiplicative overhead from 1.23 to 1.03

    A Reconfigurations Analogue of Brooks’ Theorem

    Get PDF
    Let G be a simple undirected graph on n vertices with maximum degree Δ. Brooks’ Theorem states that G has a Δ-colouring unless G is a complete graph, or a cycle with an odd number of vertices. To recolour G is to obtain a new proper colouring by changing the colour of one vertex. We show that from a k-colouring, k > Δ, a Δ-colouring of G can be obtained by a sequence of O(n 2) recolourings using only the original k colours unless G is a complete graph or a cycle with an odd number of vertices, or k = Δ + 1, G is Δ-regular and, for each vertex v in G, no two neighbours of v are coloured alike. We use this result to study the reconfiguration graph R k (G) of the k-colourings of G. The vertex set of R k (G) is the set of all possible k-colourings of G and two colourings are adjacent if they differ on exactly one vertex. It is known that if k ≤ Δ(G), then R k (G) might not be connected and it is possible that its connected components have superpolynomial diameter, if k ≥ Δ(G) + 2, then R k (G) is connected and has diameter O(n 2). We complete this structural classification by settling the missing case: if k = Δ(G) + 1, then R k (G) consists of isolated vertices and at most one further component which has diameter O(n 2). We also describe completely the computational complexity classification of the problem of deciding whether two k-colourings of a graph G of maximum degree Δ belong to the same component of R k (G) by settling the case k = Δ(G) + 1. The problem is O(n 2) time solvable for k = 3, PSPACE-complete for 4 ≤ k ≤ Δ(G), O(n) time solvable for k = Δ(G) + 1, O(1) time solvable for k ≥ Δ(G) + 2 (the answer is always yes)

    Knocking Out P_k-free Graphs

    Get PDF
    A parallel knock-out scheme for a graph proceeds in rounds in each of which each surviving vertex eliminates one of its surviving neighbours. A graph is KO-reducible if there exists such a scheme that eliminates every vertex in the graph. The Parallel Knock-Out problem is to decide whether a graph G is KO-reducible. This problem is known to be NP-complete and has been studied for several graph classes since MFCS 2004. We show that the problem is NP-complete even for split graphs, a subclass of P 5-free graphs. In contrast, our main result is that it is linear-time solvable for P 4-free graphs (cographs)

    Matchings on infinite graphs

    Full text link
    Elek and Lippner (2010) showed that the convergence of a sequence of bounded-degree graphs implies the existence of a limit for the proportion of vertices covered by a maximum matching. We provide a characterization of the limiting parameter via a local recursion defined directly on the limit of the graph sequence. Interestingly, the recursion may admit multiple solutions, implying non-trivial long-range dependencies between the covered vertices. We overcome this lack of correlation decay by introducing a perturbative parameter (temperature), which we let progressively go to zero. This allows us to uniquely identify the correct solution. In the important case where the graph limit is a unimodular Galton-Watson tree, the recursion simplifies into a distributional equation that can be solved explicitly, leading to a new asymptotic formula that considerably extends the well-known one by Karp and Sipser for Erd\"os-R\'enyi random graphs.Comment: 23 page

    Forbidden Induced Subgraphs and the Price of Connectivity for Feedback Vertex Set

    Get PDF
    Let fvs(G) and cfvs(G) denote the cardinalities of a minimum feedback vertex set and a minimum connected feedback vertex set of a graph G, respectively. For a graph class G, the price of connectivity for feedback vertex set (poc-fvs) for G is defined as the maximum ratio cfvs(G)/fvs(G) over all connected graphs G in G. It is known that the poc-fvs for general graphs is unbounded. We study the poc-fvs for graph classes defined by a finite family H of forbidden induced subgraphs. We characterize exactly those finite families H for which the poc-fvs for H-free graphs is bounded by a constant. Prior to our work, such a result was only known for the case where |H|=1

    Including the 'spiritual' within mental health care in the UK, from experiences of people with mental health problems.

    Get PDF
    Spirituality as a dimension of quality of life and well-being has recently begun to be more valued within person-centred treatment approaches to mental health in the UK. The aim of this paper is to provide indicators of the extent to which accessing a spiritual support group may be useful within mental health recovery from the view point of those in receipt of it. The study design was a small scale exploratory study utilising mixed methods. Quantitative methods were used to map the mental health, general well-being and social networks of the group. These were complimented by a semi-structured open-ended interview which allowed for Interpretative Phenomenological Analysis (IPA) of the life-history accounts of nine individuals with mental health problems who attended a ‘spirituality support group’. Data from unstructured open-ended interviews with five faith chaplains and a mental health day centre manager were also analysed using thematic analysis. The views of 15 participants are therefore recounted. Participants reported that the group offered them: an alternative to more formal religious organisations, and an opportunity to settle spiritual confusions/fears. The ‘group’ was also reported to generally help individual’s subjective feelings of mental wellness through social support. Whilst the merits of spiritual care are appealing, convincing services to include it within treatment may still be difficult

    Wear Minimization for Cuckoo Hashing: How Not to Throw a Lot of Eggs into One Basket

    Full text link
    We study wear-leveling techniques for cuckoo hashing, showing that it is possible to achieve a memory wear bound of loglogn+O(1)\log\log n+O(1) after the insertion of nn items into a table of size CnCn for a suitable constant CC using cuckoo hashing. Moreover, we study our cuckoo hashing method empirically, showing that it significantly improves on the memory wear performance for classic cuckoo hashing and linear probing in practice.Comment: 13 pages, 1 table, 7 figures; to appear at the 13th Symposium on Experimental Algorithms (SEA 2014

    Annotating Relationships between Multiple Mixed-media Digital Objects by Extending Annotea

    Get PDF
    Annotea provides an annotation protocol to support collaborative Semantic Web-based annotation of digital resources accessible through the Web. It provides a model whereby a user may attach supplementary information to a resource or part of a resource in the form of: either a simple textual comment; a hyperlink to another web page; a local file; or a semantic tag extracted from a formal ontology and controlled vocabulary. Hence, annotations can be used to attach subjective notes, comments, rankings, queries or tags to enable semantic reasoning across web resources. More recently tabbed Browsers and specific annotation tools, allow users to view several resources (e.g., images, video, audio, text, HTML, PDF) simultaneously in order to carry out side-by-side comparisons. In such scenarios, users frequently want to be able to create and annotate a link or relationship between two or more objects or between segments within those objects. For example, a user might want to create a link between a scene in an original film and the corresponding scene in a remake and attach an annotation to that link. Based on past experiences gained from implementing Annotea within different communities in order to enable knowledge capture, this paper describes and compares alternative ways in which the Annotea Schema may be extended for the purpose of annotating links between multiple resources (or segments of resources). It concludes by identifying and recommending an optimum approach which will enhance the power, flexibility and applicability of Annotea in many domains
    corecore