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Abstract. Let G be a simple undirected graph on n vertices with max-
imum degree ∆. Brooks’ Theorem states that G has a ∆-colouring un-
less G is a complete graph, or a cycle with an odd number of vertices. To
recolour G is to obtain a new proper colouring by changing the colour
of one vertex. We show that from a k-colouring, k > ∆, a ∆-colouring
of G can be obtained by a sequence of O(n2) recolourings using only the
original k colours unless
– G is a complete graph or a cycle with an odd number of vertices, or
– k = ∆ + 1, G is ∆-regular and, for each vertex v in G, no two

neighbours of v are coloured alike.

We use this result to study the reconfiguration graph Rk(G) of the k-
colourings of G. The vertex set of Rk(G) is the set of all possible k-
colourings of G and two colourings are adjacent if they differ on exactly
one vertex. It is known that
– if k ≤ ∆(G), then Rk(G) might not be connected and it is possible

that its connected components have superpolynomial diameter,
– if k ≥ ∆(G) + 2, then Rk(G) is connected and has diameter O(n2).

We complete this structural classification by settling the missing case:
– if k = ∆(G)+1, then Rk(G) consists of isolated vertices and at most

one further component which has diameter O(n2).
We also describe completely the computational complexity classification
of the problem of deciding whether two k-colourings of a graph G of
maximum degree ∆ belong to the same component of Rk(G) by settling
the case k = ∆(G) + 1. The problem is
– O(n2) time solvable for k = 3,
– PSPACE-complete for 4 ≤ k ≤ ∆(G),
– O(n) time solvable for k = ∆(G) + 1,
– O(1) time solvable for k ≥ ∆(G) + 2 (the answer is always yes).

1 Introduction

Definitions and Background Let G = (V,E) denote a simple undirected
graph and let k be a positive integer. A k-colouring of G is a function γ :
V → {1, 2, . . . , k} such that if uv ∈ E, γ(u) 6= γ(v). The k-colouring recon-
figuration graph of G has as its vertex set all possible k-colourings of G, and
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two k-colourings γ1 and γ2 are joined by an edge if, for some vertex u ∈ V ,
γ1(u) 6= γ2(u), and, for all v ∈ V \ {u}, γ1(v) = γ2(v); that is, if γ1 and γ2
disagree on exactly one vertex. The reconfiguration graph is denoted by Rk(G).

The study of reconfiguration graphs of colourings began in [10,11]. The prob-
lem of deciding whether two 3-colourings of a graph G are in the same compo-
nent of R3(G) was shown to be solvable in time O(n2) in [12]; it was also proved
that the diameter of any component of R3(G) is O(n2). In contrast, in [5] the
analagous problem for k-colourings, k ≥ 4, was shown to be PSPACE-complete,
and examples of reconfiguration graphs with components of superpolynomial di-
ameter were given. In [2], reconfiguration graphs of k-colourings of chordal graphs
were shown to be connected with diameter O(n2) whenever k is more than the
size of the largest clique (and an infinite class of chordal graphs was described
whose reconfiguration graphs have diameter Ω(n2)). In [1] this was generalized
to show that if k is at least two greater than the treewidth tw(G) then, again,
Rk(G) is connected with diameter O(n2). (Notice that if k = tw(G) + 1, then
Rk(G) might not be connected since, for example, G might be a complete graph
on tw(G) + 1 vertices and then Rk(G) contains no edges.)

Our Results We study reconfigurations of colourings for graphs of bounded
maximum degree. The celebrated theorem of Brooks [8] states that a graph G
with maximum degree ∆ has a ∆-colouring unless it is the complete graph on
∆ + 1 vertices or a cycle with an odd number n of vertices; we denote these
two graphs by K∆+1 and Cn respectively. The question we address is: given a k-
colouring γ of G, is there a path from γ to a ∆-colouring in Rk(G)? (Note that we
are abusing our terminology. When we are working with Rk(G), by a ∆-colouring
we mean a k-colouring in which only ∆ colours appear on the vertices.) Our first
result provides a complete answer to this question. We require two definitions. A
k-colouring γ of a graph is frozen if, for every vertex v, every colour except γ(v)
is used on a neighbour of v. Notice that a frozen colouring is an isolated vertex
in Rk(G). The length of a shortest path between colourings α and β in Rk(G) is
denoted by dk(α, β). We state our results for connected graphs as other graphs
can be considered component-wise.

Theorem 1. Let G be a connected graph on n vertices with maximum degree ∆,
and let k ≥ ∆ + 1. Let α be a k-colouring of G. If α is not frozen and G
is not K∆+1 or, if n is odd, Cn, then there exists a ∆-colouring γ of G such
that dk(α, γ) is O(n2).

Note that α can only be frozen if k = ∆ + 1, and only if G is ∆-regular. Let
us briefly note that such colourings do exist: for example a 3-colouring of C6 in
which each colour appears exactly twice on vertices at distance 3, or a 4-colouring
of the cube in which diagonally opposite vertices are coloured alike.

As we will see, the case k = ∆+ 1 is the only cause of difficulty in the proof
of our first result. Using Theorem 1, however, we can, with the aid of one further
lemma, give a characterization of R∆+1(G) which is our next result.



Theorem 2. Let G be a connected graph on n vertices with maximum de-
gree ∆ ≥ 3. Let α and β be (∆ + 1)-colourings of G. If α and β are not frozen
colourings, then d∆+1(α, β) is O(n2). Moreover, it is possible to decide in time
O(n) whether or not there is a path between α and β in R∆+1(G).

Theorem 2 implies that R∆+1(G) contains a number of isolated vertices (repre-
senting frozen colourings) plus, possibly, one further component. It is possible
that the number of isolated vertices is zero (that is, there are no frozen (∆+ 1)-
colourings; for example, consider 4-colourings of K3,3), or that there are only
isolated vertices (consider R4(K4) for instance; and Brooks’ theorem tells us
that complete graphs are the only graphs for which R∆+1(G) is edgeless since
other graphs have colourings in which only ∆ colours are used and by recolour-
ing any vertex with the unused colour we find a neighbouring colouring). We
observe that the requirement that ∆ ≥ 3 is necessary since, for example R3(Cn),
n odd, has more than one component [10,11].

Consequences of Our Results Our theorems complete both structural and
algorithmic classifications for reconfigurations of colourings of graphs of bounded
maximum degree.

In [9] it was noted that if k ≥ ∆(G) + 2, Rk(G) is connected with diameter
O(n2). Combined with the results for general graphs noted above, and Theo-
rem 1, we have the following summary of the structure of reconfiguration graphs:
– if k ≤ ∆(G) then Rk(G) might not be connected and it is possible that its

connected components have superpolynomial diameter
– if k = ∆(G) + 1 then Rk(G) consists of zero or more isolated vertices and at

most one further component which has diameter O(n2) (if it exists).
– if k ≥ ∆(G) + 2 then Rk(G) is connected and has diameter O(n2).

And we summarise what is known about the computational complexity of the
problem of deciding, given a graph and two k-colourings, whether the two colour-
ings belong to the same connected component of Rk(G) using Theorem 2 for the
previously missing third case.
– O(n2) time solvable for k = 3,
– PSPACE-complete for 4 ≤ k ≤ ∆(G),
– O(n) time solvable for k = ∆(G) + 1,
– O(1) time solvable for k ≥ ∆(G) + 2 (the answer is always yes).

Related Work We note that reconfiguration graphs can be defined for any
search problem: vertices correspond to solutions and edges join solutions that
are “close” to one another; that is, solutions that differ as little as possible (for
a given problem, there might be more than one way to define an edge relation).
Reconfiguration graphs have been studied for a number of combinatorial prob-
lems; the questions asked are typically (as we have seen for colouring) is the
graph connected?, what is the diameter of the graph (or of its connected com-
ponents)?, how difficult is it to decide whether there is a path between a pair
of given solutions? Problems studied include boolean satisfiability [13,21],clique



and vertex cover [16], independent set [6, 20], list edge colouring [17],shortest
path [3, 4], and subset sum [15] (see also a recent survey [14]). Recent work has
included looking at finding the shortest path in the reconfiguration graph be-
tween given solutions [19], and studying the fixed-parameter-tractability of these
problems [7, 18,23,24].

Further preliminaries The degree of a vertex v is denoted by deg(v). A graph
is k-degenerate if every induced subgraph has a vertex with degree at most k. It
is well-known that a graph is k-degenerate if and only if there exists a degeneracy
ordering v1, v2, . . . , vn of its vertices such that vi has at most k neighbours vj
with j < i. A graph is r-regular if for every vertex v, deg(v) = r.

A remark about our proofs. A common aim is to find a path between a pair
of colourings α and β in a reconfiguration graph. That is, to find a sequence
of colourings γ0, γ1, . . . , γt with α = γ0, β = γt such that adjacent colourings
disagree on a single vertex. We think of this sequence as a recolouring sequence.
If, for 1 ≤ i ≤ t, vi is the vertex on which γi and γi−1 disagree, then we can
think of β as being obtained from α by recolouring the vertices v1, . . . , vt in
order. Therefore, rather than explicitly considering the reconfiguration graph,
we will often seek to find a recolouring sequence; that is, to describe a sequence
of vertices and to say which colour each vertex should be recoloured with. Then
we will need to show that if we apply this recolouring sequence to α, we obtain
β, and that all the intermediate colourings obtained are proper.

2 Proofs of Theorems

To prove our theorems, we need a number of lemmas that are mostly concerned
with (∆+ 1)-colourings which, as we shall see, present the only real difficulty in
proving Theorem 1. Some proofs are omitted for space reasons.

We define a number of terms we will use to describe vertices of G with respect
to some (∆+1)-colouring. A vertex v is locked if ∆ distinct colours appear on its
neighbours. A vertex that is not locked is free. Clearly a vertex can be recoloured
only if it is free. If v is locked and then one of its neighbour is recoloured and v
becomes free, we say that v is unlocked. A vertex v is superfree if there is a colour
c 6= ∆ + 1 such that neither v nor any of its neighbours is coloured c. A vertex
can only be recoloured with a colour other than ∆ + 1 if it is superfree. Note
there are ∆− 1 distinct colours that must appear on the ∆ neighbours of v if it
is not superfree. We say that G is in (∆+ 1)-reduced form if for every vertex v
coloured with (∆+ 1), v and each of its neighbours are locked. This implies that
the distance between any pair of vertices coloured (∆ + 1) is at least 3 as no
vertex can have two neighbours coloured (∆+ 1).

The key to proving Theorem 1 will be to show that from a (∆+ 1)-colouring
one can recolour some of the vertices to arrive at a colouring in which colour
∆ + 1 appears on fewer vertices. We begin by considering the case where the
colour ∆+ 1 appears on only one vertex. The following lemma is inspired by a
proof of Brooks’ theorem [22].



Lemma 1. Let G = (V,E) be a connected graph on n vertices with maximum
degree ∆ ≥ 3, and let α be a (∆ + 1)-colouring of G with exactly one vertex v
coloured ∆ + 1. If G does not contain K∆+1 as a subgraph, then G can be
recoloured to a ∆-colouring in O(n) steps.

Proof. We can assume that G is in (∆+ 1)-reduced form since if v is not locked
then we can immediately recolour it; if a neighbour of v is not locked then it can
be recoloured and this will unlock v and allow us to recolour it.

Let us fix a labelling of the neighbours of v: let xi be the neighbour such that
α(xi) = i, 1 ≤ i ≤ ∆. Our aim is to find a recolouring sequence that unlocks
v. There is one recolouring sequence that we will use several times. Suppose
that C is a connected component of a subgraph of G induced by two colours i
and j, ∆ + 1 /∈ {i, j}, and no vertex coloured j in C is adjacent to v. First the
vertices coloured j are recoloured with ∆ + 1. Then the vertices coloured i are
recoloured j, and finally the vertices initially coloured j are recoloured i. It is
clear that all colourings are proper and the overall effect is to swap the colours i
and j on C.

We say that any colouring γ where G is in (∆ + 1)-reduced form, only v is
coloured ∆ + 1 and γ(xi) = i, 1 ≤ i ≤ ∆, is good. For any good colouring γ,
let Gγij be the maximal connected component containing xi of the subgraph of
G induced by the vertices coloured i and j by γ.

We make some claims about good colourings. When we claim that v can be
unlocked, it is implicit that colour ∆+ 1 is not used on any other vertex in the
graph so that unlocking v allows us to reach a colouring where ∆+1 is not used.

Claim 1: If γ is good and xj /∈ Gγij , then v can be unlocked.

If xj /∈ Gγij , then the only vertex adjacent to v in Gγij is xi. Thus the colours i
and j can be swapped on Gγij . Then v has two neighbours with colour j and is
unlocked.

Claim 2: If γ is good and Gγij is not a path from xi to xj , then v can be unlocked.

By Claim 1, we can assume that xi and xj are in Gγij . They must have degree
1 in Gij since, as G is in (∆ + 1)-reduced form, they are locked. Suppose that
Gγij is not a path and consider the shortest path in Gγij from xi to xj , and the
vertex w nearest to xi on the path that has degree more than 2. Then w has at
least three neighbours coloured alike in G and is superfree and can be recoloured
with a colour other than i, j or ∆+ 1. Call this new colouring γ′ and note that,

by the choice of w, Gγ
′

ij does not contain xj . Now Claim 1 implies Claim 2.

As G is K∆+1-free, v and its neighbours are not a clique so we can assume
that x1 and x2 are not adjacent. Let u be the unique neighbour of x1 coloured 2.
For a good colouring γ, note that u is in Gγ12, and let Hγ

23 be the component of
the subgraph of G induced by the vertices with colour 2 and 3 that contains u.

Claim 3: If γ is good and u has more than one neighbour in Hγ
23, then v can

be unlocked.

If Gγ12 is not a path, then use Claim 2. Otherwise u has two neighbours coloured
1; if u has two neighbours in Hγ

23, then it also has two neighbours coloured 3
and is superfree. Recolour it and apply Claim 1.



Claim 4: If γ is good and Hγ
23 is a path, then v can be unlocked.

By Claim 2 we can assume Gγ23 is a path. If Hγ
23 = Gγ23, then we can use Claim 3.

So we assume Hγ
23 6= Gγ23 and so x2, x3 /∈ H23 and H23 contains no neighbour

of v. Let γ′ be the colouring obtained by swapping the colours 2 and 3 on Hγ
23.

By Claim 3, u is an endvertex of Hγ
23. Let the other endvertex be w. (If

w = u, then u has no neighbour coloured 3 and can be recoloured. Then use
Claim 2.)

If Gγ
′

12 is not a path from x1 to x2, we use Claim 2. If it is such a path, then

let the unique neighbour of x1 in Gγ
′

12 be y and clearly y ∈ Hγ
23. From x2 traverse

Gγ
′

12 until the last vertex z that is also in Gγ12 is reached. Let t be the next vertex

along from z towards x1 in Gγ
′

12. Clearly t is also in Hγ
23. In fact, we can assume

that w = y = t since if y or t has degree 2 in H23 as well as in Gγ
′

12 it has two
neighbours coloured 1 and two neighbours coloured 3 in γ′ and is superfree. It
can be recoloured and then Claim 2 is used.

So x1wz is coloured 131 in γ so is in Gγ13. Then z is in both Gγ13 and Gγ12 so
is superfree and can be recoloured so that Claim 2 can be used. This completes
the proof of Claim 4.

To complete the proof: we know that the initial colouring α is good. If none
of the four claims can be used, then consider Hα

23. We know that u has degree 1
in H23 but H23 is not a path. So traversing edges away from u in Hα

23, let s be
the first vertex reached with degree 3. Then s is superfree and can be recoloured
so that H23 becomes a path, and then Claim 4 can be used. ut

In Lemma 3, we shall see how, for regular graphs, the number of vertices
coloured ∆ + 1 can be reduced when more than one is present. First we need
some definitions and a lemma. Let P be a path:

– P is nearly (∆+ 1)-locked if its endvertices are locked and coloured ∆+ 1;
– P is (∆ + 1)-locked if it is nearly (∆ + 1)-locked and every vertex on the

path is locked.

Lemma 2. Let G be a graph in (∆+ 1)-reduced form. If G has a (∆+ 1)-locked
path P , then each endvertex of P is an endvertex of an (∆ + 1)-locked path of
length 3.

A path is nice if it is a nearly (∆ + 1)-locked path, it contains free vertices
and the endvertices and their neighbours are the only locked vertices. Notice
that a nice path is not necessarily induced and, in particular, may contain a
(∆+ 1)-locked subpath.

Lemma 3. Let G be a connected regular graph on n vertices with degree ∆ ≥ 3,
let α be a (∆+1)-colouring of G, and suppose that G is in (∆+1)-reduced form.
If G has at least two (∆+ 1)-locked vertices and is not frozen, then there exists
a (∆+ 1)-colouring γ of G, such that d∆+1(α, γ) = O(n) and fewer vertices are
coloured ∆+ 1 with γ than with α.



Proof. We consider a number of cases.

Case 1: There exists a free vertex u adjacent to a (∆+ 1)-locked path P .

Let b be the vertex on the path adjacent to u. As b is locked it has a neighbour
a coloured ∆+ 1. Let c be a neighbour of b on P other than a. As c is locked it
has a neighbour d coloured ∆+ 1.

Since G is in (∆ + 1)-reduced form, u is not adjacent to a or d but might
be adjacent to c. In each case, it is routine to verify that by recolouring u to
∆+ 1, b and c can both be recoloured unlocking a and d and allowing them to
be recoloured. Thus the number of vertices coloured ∆+ 1 is reduced.

Case 2: G has a nice path.

Let P be a shortest nice path. Let the endpoints be v and w with neighbours s
and t on P respectively. If s and t are adjacent, then the path vstw is (∆+ 1)-
locked and has a free vertex adjacent to s so use Case 1. Thus assume that P is
induced since the presence of any other edge would imply either a shorter nice
path could be found or that the graph was not in (∆+ 1)-reduced form.

We use induction on the number ` of free vertices in P to show that there
is a sequence of recolourings that lead to a colouring that has fewer vertices
coloured ∆+ 1.

If ` = 1, let u be the free vertex in P . Recolour u to ∆ + 1. Now s and t
have two neighbours coloured ∆ + 1 and can be recoloured. Then v and w are
unlocked and can both be recoloured, and this leaves one vertex on P coloured
∆+ 1 rather than two.

Suppose that ` = 2. Let P = vsu1u2tw where u1 and u2 are free vertices.

Subcase 2.1: u1 and u2 do not share a neighbour. Let x1 and x2 be neighbours
of u1 and u2 not in P . Clearly x1 6= x2 and u1x2 and u2x1 are not edges.

Subcase 2.1.1: x1 is locked. We know x1 has a (∆+ 1)-locked neighbour, and
this must be v (if it is some other vertex z, then vsu1x1z is a nice path that is
shorter than P ).

Suppose x1s is not an edge. Recolour u1 to ∆ + 1. This unlocks x1 which
can be recoloured with α(u1) which, in turn, unlocks v and allows us to recolour
it with α(x1). If u1 is free, it can be recoloured and the number of vertices
coloured ∆ + 1 is reduced and we are done. If u1 is locked, then note that s
has been unlocked (as it no longer has a neighbour coloured α(u1)). Thus we
can recolour s and then recolour u1 with α(s) and again we have removed one
instance of the colour ∆+ 1.

Suppose instead that x1s is an edge. Notice that α(s), α(u1) and α(x1) are
distinct as the three vertices form a triangle. Recolour u1 with ∆+ 1 and then s
with α(u1). Now v is unlocked and can be recoloured with α(s). If u1 is free,
then recolour it and we are done. Otherwise this sequence of recolourings leaves
u1 locked (with α(u1) and α(x1) as the colours on s and x1 respectively). So,
from α, we do the following instead: again start by recolouring u1 with ∆ + 1,
but then recolour x1 with α(u1) to unlock v. Now that α(x1) is not used on a
neighbour of u1, u1 is free and can be recoloured.



Subcase 2.1.2: x1 is free. If x2 is locked, we can, by symmetry, use the previous
subcase, so we can assume that both x1 and x2 are free. Recolour u2 to ∆+ 1.
Then t is unlocked and can be recoloured which, in turn, unlocks w allowing
us to recolour it too. If u2 is free, we recolour it and are done. If u1 is free, we
recolour it and unlock u2 and, again, recolour it.

If u1 and u2 are both locked, observe that x1 is still free as it has no neighbour
coloured ∆+1 since u2x1 is not an edge. Recolour x1 to ∆+1, and then recolour
u1 to α(x1). Note that now s has no neighbour coloured α(u1) and is free and can
be recoloured so that v is unlocked and can also be recoloured. By recolouring
u1, we also unlock u2, so we recolour it and are done.

Subcase 2.2: u1 and u2 share a neighbour. Let x1 be a neighbour of u1 and u2.
Since P is induced, x1 is not in P . If x1 is locked, then let its neighbour coloured
∆+ 1 be y. Then vsu1x1y is a shorter nice path unless y = v. By an analagous
argument we need y = w. This contradiction tells us that x1 must be free.

If x1 is joined to both s and t, then vsx1tw is a shorter nice path. So, without
loss of generality, assume that x1t is not an edge. Thus as u2 has a neighbour
that is not adjacent to x1, x1 has a neighbour x3 that is not adjacent to u2.

Subcase 2.2.1: x3 = s. Recolour u1 with ∆+1 and then s with α(u1). Now v is
unlocked and can be recoloured with α(s). If u1 is free, then recolour it and we
are done. If u2 or x1 is still free, then recolour one of them to unlock u1, which
in turn can be recoloured and are done. Otherwise this sequence of recolourings
leaves u1, u2 and x1 locked so x1 is the only neighbour of u2 coloured α(x1). So,
from α, we do the following instead: recolour x1 with ∆+1 to unlock s and then
v. If x1 can be recoloured, then we do so and are done. Otherwise notice that
α(x1) is not used on a neighbour of u2. It is thus free and can be recoloured to
unlock x1 and allow us to recolour it.

Subcase 2.2.2: x3 6= s, and x3 is free. First, suppose x3s is an edge. Recolour
u2 to ∆ + 1, t to α(u2) and w to α(t). If either u2 or one of its neighbours is
now free, u2 can be recoloured and we are done. Otherwise u1, u2 and x1 are all
locked, but x3 is still free since it has no neighbour coloured ∆+ 1. Recolour x3
to ∆+ 1 to unlock x1; then recolour x1 to unlock and recolour u2. As x3s is an
edge, s has two neighbours coloured ∆+ 1. Thus we recolour s to unlock v.

If x3t is an edge we can use a similar argument. So suppose x3s and x3t are
not edges. Recolour u2 to ∆+ 1, to unlock and recolour first t and then w. It is
possible to recolour u2 unless it and all its neighbours are locked. This implies
that u1, x1 and u2 are locked. We consider two subcases.

Subcase 2.2.2.1: u1x3 is not an edge. We recolour x3 to ∆ + 1 to unlock and
recolour x1 and then u2. Notice that u1 is now free since it has no neighbour
coloured ∆ + 1. Recoloured u1 unlocks s, so we recolour it, which in turn un-
locks v. Observe that x1 now has two neighbours u1 and x3 with colour ∆+ 1 so
is free. If u1 or u3 is free, we can recolour at least one of them directly and we
are done. Otherwise, we recolour x1 so that x3 and u1 can now be recoloured.

Subcase 2.2.2.2: u1x3 is an edge. Recolour u3 to ∆ + 1, then recolour u1, s
and v. Observe that x1 now has two neighbours u2 and u3 with colour ∆+ 1. If



u2 or u3 are free, we are done. Otherwise, recolour x1, then recolour u2 and x3,
and we are done.

Subcase 2.2.3: x3 6= s, and x3 is locked. Then x3 has a (∆ + 1)-locked neigh-
bour y. If y = v, the path H = vx3x1u2tw is nice with two free vertices x1
and u2. Furthermore, u1 is free and a neighbour of x1 and u2, in which case
H satisfies the previous subcase unless x3 and t are adjacent in which case use
Subcase 2.1. A similar argument can be made if y = w or y 6∈ {v, w}.

This completes the case ` = 2.

Now suppose that for all i < `, if there is a nice path containing i free
vertices, the number of vertices coloured ∆ + 1 can be reduced. Suppose that
the shortest such path is P = vsu1u2 . . . u`tw where ` ≥ 3. We recolour u` to
∆ + 1, then t and then w. If u` or one of its neighbours is free, then u` can
be recoloured and we are done. Otherwise, u` and u`−1 are locked. Consider
the path P ′ = vsu1 . . . u`−2u`−1u`. By our inductive hypothesis, the number of
colour ∆+ 1 vertices in P ′ can be reduced. Case 2 is complete.

After Cases 1 and 2 we are left with:

Case 3: There does not exist a free vertex adjacent to a (∆+ 1)-locked path
and G has no nice path.

As G contains more than one (∆+1)-locked vertex, it contains a nearly (∆+1)-
locked path; let P be the shortest and let v and w be its endvertices. As G is
in (∆+ 1)-reduced form, v, w and their neighbours are locked. If P contains no
other vertices, it is (∆ + 1)-locked. Otherwise, since there are no nice paths, P
contains another locked vertex u. Let y be the neighbour of u coloured ∆+1. If y
is on P , then we can assume, without loss of generality, that it is not between v
and u. Then, whether or not y is on P , the subpath from v to u plus the edge uy
is a shorter nearly (∆ + 1)-locked path. This contradiction proves that G must
contain a (∆+ 1)-locked path.

As G is not frozen, it contains a free vertex. Let Q be the shortest path in G
that joins a free vertex to a (∆+ 1)-locked vertex. Let v be the (∆+ 1)-locked
endvertex. So v is an endpoint of a (∆ + 1)-locked path R, and, by Lemma 2,
we can assume that R has length 3.

Let u be the endvertex of Q that is free. By the minimality of Q, u is the
only free vertex in Q. Let a be the neighbour of u in Q. As a is locked it has a
(∆+ 1)-locked neighbour z. Thus we must have z = v and Q = vau.

Let R = wtsv. Observe that us, ut, uv and uw cannot be edges as no locked
path has a free neighbour. Thus the vertices of R and Q other than v are distinct.
Consider the (not necessarily induced) path M = wtsvau. Notice also that at is
not an edge else the free vertex u is adjacent to the (∆+ 1)-locked path vatw.

Suppose M is an induced path. Recolour u with ∆+1 to unlock and recolour
a and then v. If u is not locked, then recolour and we are done. Else notice that
the vertices v and s are free, and the vertices u, a, t, w are locked. Consequently,
we have that M is a nice path, and by Case 2 we are done.

The only edge that might be present among the vertices of M is as so suppose
this exists. Recolour u with ∆+ 1 to unlock and recolour first a and then v. If u



or any of its neighbours are free, u can be recoloured and we are done. Otherwise
note that recoloured v unlocks s. It follows that the path H = uastw is nice,
and we can use Case 2. This completes Case 3.

As each vertex is recoloured a constant number of times, the lemma follows. ut

We need one final lemma before we prove Theorem 1.

Lemma 4. Let G = (V,E) be a connected graph on n vertices with maximum
degree ∆ ≥ 1 and degeneracy ∆ − 1. Let α be a (∆ + 1)-colouring of G. Then
there exists a ∆-colouring γ of G such that d∆+1(α, γ) ≤ n2.

Proof (of Theorem 1). If k > ∆ + 1, then, by Brooks’ Theorem, a ∆-colouring
γ exists in Rk(G) unless G is complete or an odd cycle. We know that, in this
case, Rk(G) is connected and has diameter O(n2) so certainly dk(α, γ) is O(n2).

Suppose that k = ∆+ 1. If G is (∆− 1)-degenerate, the result follows from
Lemma 4. We claim that the only graphs with maximum degree ∆ that are not
(∆− 1)-degenerate are∆-regular graphs. To see this, consider a smallest possible
counterexample G that has degeneracy and maximum degree ∆ and contains a
vertex v with deg(v) < ∆. Suppose G − v has degeneracy ∆. Then, by the
minimality of G, we find that G − v is ∆-regular. This would mean that every
neighbor of v in G has more than ∆ neighbours, which is not possible. Hence,
G − v must have degeneracy ∆ − 1. But every induced subgraph of G is either
an induced subgraph of G− v or contains v, and, in either case, must contain a
vertex of degree less than ∆ contradicting the claim that G has degeneracy ∆.

So we can suppose now that G is ∆-regular and in (∆+1)-reduced form with
α: if not, we try to recolour each vertex with colour ∆+ 1 either directly or by
first recolouring one of its neighbours. Repeatedly applying Lemma 3 starting
from α, we obtain a (∆ + 1)-colouring γ′ in O(n2) steps such that at most one
vertex is coloured (∆ + 1) with γ′. Lemma 1 can now be applied to obtain
a ∆-colouring γ from γ′ in O(n) steps. Consequently d∆+1(α, γ) ≤ O(n2) as
required. ut

We finish the section by considering Theorem 2. First we need:

Lemma 5. Let G = (V,E) be a connected graph on n vertices with maximum
degree ∆ ≥ 3. Let γ1 and γ2 be ∆-colourings of G. Then d∆+1(γ1, γ2) is O(n2).

The lemma says that there is a path between any pair of ∆-colourings, but,
because we are working with R∆+1(G), the intermediate colourings might use
∆+ 1 colours.

Proof (of Theorem 2). Theorem 1 implies that from each of α and β there is a
path in R∆+1 to a ∆-colouring; Lemma 5 implies that there is a path between
these two ∆-colourings that completes the path from α to β. Consequently, it is
possible to decide in O(n) time whether or not there is a path between α and
β in R∆+1(G): it is necessary only to check for each vertex v in G, for each of
α and β, whether v and its neighbours use every colour in {1, 2, . . . ,∆ + 1}. If
they do not, neither colouring is frozen so there is a path between them. ut



3 Conclusions

We have completed the study of reconfiguration graphs of graphs of bounded
degree by considering the case where the number of colours is one more than
the maximum degree. In Theorem 2, we showed that the reconfiguration graph
contains isolated vertices and one further component. As it is easy to recognize a
frozen colouring, this also means that we can decide in polynomial time whether
a given pair of colourings belong to the same component. We make two additional
observations about when the reconfiguration graph can have isolated vertices.

Corollary 1. Let G be a connected regular graph on n vertices with maximum
degree ∆ ≥ 3. If n 6≡ 0 mod (∆+ 1) then R∆+1(G) has diameter O(n2).

Proof. Let γ be a frozen colouring of G. Let V1, V2, . . . , V∆+1 be the colour classes
of γ. Suppose there exist integers i, j such that |Vi| > |Vj |. Because γ is a frozen
colouring each v ∈ Vi has a neighbour in Vj . Hence there is a vertex u ∈ Vj with
at least two neighbours in Vi. Since u has ∆ neighbours, it follows that u is free
and can thus be recoloured, a contradiction. Therefore |V1| = · · · = |V∆+1|. We
have proved that whenever G has a frozen colouring, n ≡ 0 mod (∆ + 1), and
by Theorem 2 if there is no frozen colouring, R∆+1(G) is connected. ut

Corollary 2. Let G be a connected graph with maximum degree ∆ ≥ 3 and
degeneracy (∆− 1). Then R∆+1(G) is connected with diameter O(n2).

Proof. The result follows immediately from Theorem 2 by observing that a (∆−
1)-degenerate graph has a vertex with at most ∆−1 neighbours and is thus free
in any (∆+ 1)-colouring of G. ut

Cereceda [9] conjectured that the diameter of the reconfiguration graph on
(k+2)-colourings of a k-degenerate graph on n vertices is O(n2). This conjecture
has been answered in the positive for values of k ∈ {1, ∆} [9]. By the previous
corollary, we further confirm this conjecture for the value k = ∆− 1.
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