11 research outputs found
RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction
Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease
Spin-based quantum information processing with semiconductor quantum dots and cavity QED
A quantum information processing scheme is proposed with semiconductor
quantum dots located in a high-Q single mode QED cavity. The spin degrees of
freedom of one excess conduction electron of the quantum dots are employed as
qubits. Excitonic states, which can be produced ultrafastly with optical
operation, are used as auxiliary states in the realization of quantum gates. We
show how properly tailored ultrafast laser pulses and Pauli-blocking effects,
can be used to achieve a universal encoded quantum computing.Comment: RevTex, 2 figure
Quantum computing with four-particle decoherence-free states in ion trap
Quantum computing gates are proposed to apply on trapped ions in
decoherence-free states. As phase changes due to time evolution of components
with different eigenenergies of quantum superposition are completely frozen,
quantum computing based on this model would be perfect. Possible application of
our scheme in future ion-trap quantum computer is discussed.Comment: 10 pages, no figures. Comments are welcom
Quantum computation with mesoscopic superposition states
We present a strategy to engineer a simple cavity-QED two-bit universal
quantum gate using mesoscopic distinct quantum superposition states. The
dissipative effect on decoherence and amplitude damping of the quantum bits are
analyzed and the critical parameters are presented.Comment: 9 pages, 5 Postscript and 1 Encapsulated Postscript figures. To be
published in Phys. Rev.
Quantum computing in optical microtraps based on the motional states of neutral atoms
We investigate quantum computation with neutral atoms in optical microtraps
where the qubit is implemented in the motional states of the atoms, i.e., in
the two lowest vibrational states of each trap. The quantum gate operation is
performed by adiabatically approaching two traps and allowing tunneling and
cold collisions to take place. We demonstrate the capability of this scheme to
realize a square-root of swap gate, and address the problem of double
occupation and excitation to other unwanted states. We expand the two-particle
wavefunction in an orthonormal basis and analyze quantum correlations
throughout the whole gate process. Fidelity of the gate operation is evaluated
as a function of the degree of adiabaticity in moving the traps. Simulations
are based on rubidium atoms in state-of-the-art optical microtraps with quantum
gate realizations in the few tens of milliseconds duration range.Comment: 11 pages, 7 figures, for animations of the gate operation, see
http://www.itp.uni-hannover.de/~eckert/na/index.htm
Coherent Manipulation of a Ca Spin Qubit in a Micro Ion Trap
We demonstrate the implementation of a spin qubit with a single Ca ion in a
micro ion trap. The qubit is encoded in the Zeeman ground state levels mJ=+1/2
and mJ=-1/2 of the S1/2 state of the ion. We show sideband cooling close to the
vibrational ground state and demonstrate the initialization and readout of the
qubit levels with 99.5% efficiency. We employ a Raman transition close to the
S1/2 - P1/2 resonance for coherent manipulation of the qubit. We observe single
qubit rotations with 96% fidelity and gate times below 5mus. Rabi oscillations
on the blue motional sideband are used to extract the phonon number
distribution. The dynamics of this distribution is analyzed to deduce the
trap-induced heating rate of 0.3(1) phonons/ms
An atom and a photon
10.1134/S1054660X0707016XLaser Physics1771007-101