285 research outputs found
Recommended from our members
Solid state NMR of salivary calculi: Proline-rich salivary proteins, citrate, polysaccharides, lipids, and organic–mineral interactions
Solid state NMR (ssNMR) can characterize mineral (31P) and organic (13C) components of
human salivary stones (n = 8). All show apatitic 31P spectra. 13C ssNMR indicates more
protein, of more consistent composition, than apatitic uroliths, with signals from Tyr, Phe and
His prominent. Citrate and lipid, identified by dipolar dephasing (DD), and polysaccharides
are also observable in varying amounts. 13C{31P} rotational echo double resonance (13C{31P}
REDOR) identifies carbon atoms in close (< ca. 0.5 nm) proximity to phosphorus and
therefore probably binding with mineral. Citrate, sugar and carboxylate signals undergo
strong 13C{31P} REDOR, also seen to signals between 50 and 60 ppm, from protein α-
carbons and, possibly, phosphoserines and phospholipids, and sometimes to a 35 – 40 ppm
envelope containing Asp-Cβ and Glu-Cγ signals. Amino acid analysis indicates high proline
and aromatic content. 13C ssNMR and amino acid composition is consistent with
preponderance of proline-rich salivary proteins such as statherin.The U.K. EPSRC (Y. L.) and MRC (D. G. R.) for fundingThis is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.crci.2015.07.00
Morphologies of three-dimensional shear bands in granular media
We present numerical results on spontaneous symmetry breaking strain
localization in axisymmetric triaxial shear tests of granular materials. We
simulated shear band formation using three-dimensional Distinct Element Method
with spherical particles. We demonstrate that the local shear intensity, the
angular velocity of the grains, the coordination number, and the local void
ratio are correlated and any of them can be used to identify shear bands,
however the latter two are less sensitive. The calculated shear band
morphologies are in good agreement with those found experimentally. We show
that boundary conditions play an important role. We discuss the formation
mechanism of shear bands in the light of our observations and compare the
results with experiments. At large strains, with enforced symmetry, we found
strain hardening.Comment: 6 pages 5 figures, low resolution figures
Possible deviations from Griffith's criterion in shallow slabs, and consequences on slab avalanche release
International audiencePossible reasons for deviations from Griffith's criterion in slab avalanche triggerings are examined. In the case of a major basal crack, we show (i) that the usual form of Griffith's criterion is valid if elastic energy is stored in a shallow and hard slab only, and (ii) that rapid healing of broken ice bonds may lead to shear toughnesses larger than expected from tensile toughness experiments. In the case of avalanches resulting from failure of multi-cracked weak layers, where a simple Griffith's criterion cannot be applied, frequency/size plots obtained from discrete elements and cellular automata simulations are shown to obey scale invariant power law distributions. These findings are confirmed by both frequency/acoustic emission duration and frequency/size plots obtained from field data, suggesting that avalanche triggerings may be described using the formalism of critical phenomena
Critical packing in granular shear bands
In a realistic three-dimensional setup, we simulate the slow deformation of
idealized granular media composed of spheres undergoing an axisymmetric
triaxial shear test. We follow the self-organization of the spontaneous strain
localization process leading to a shear band and demonstrate the existence of a
critical packing density inside this failure zone. The asymptotic criticality
arising from the dynamic equilibrium of dilation and compaction is found to be
restricted to the shear band, while the density outside of it keeps the memory
of the initial packing. The critical density of the shear band depends on
friction (and grain geometry) and in the limit of infinite friction it defines
a specific packing state, namely the \emph{dynamic random loose packing}
PANDALP : a new penetrometer for snow investigation
This paper presents a new tool for snow investigation, issued from a portable dynamic penetrometer Panda with variable energy for soil investigation. After a brief presentation of this apparatus, a comparable study between this tool and other tests is carried out. The application of this apparatus in different sights shows that in couple with other tests such us nivological test or temperature test, we could use this portable machine to make snow investigation
Diffraction techniques and vibrational spectroscopy opportunities to characterise bones
From a histological point of view, bones that allow body mobility and protection of internal organs consist not only of different organic and inorganic tissues but include vascular and nervous elements as well. Moreover, due to its ability to host different ions and cations, its mineral part represents an important reservoir, playing a key role in the metabolic activity of the organism. From a structural point of view, bones can be considered as a composite material displaying a hierarchical structure at different scales. At the nanometre scale, an organic part, i.e. collagen fibrils and an inorganic part, i.e. calcium phosphate nanocrystals are intimately mixed to assure particular mechanical properties
Response of the ATLAS tile calorimeter prototype to muons
A study of high energy muons traversing the ATLAS hadron Tile calorimeter in the barrel region in the energy range between 10 and 300~GeV is presented. Both test beam experimental data and Monte Carlo simulations are given and show good agreement. The Tile calorimeter capability of detecting isolated muons over the above energy range is demonstrated. A signal to background ratio of about 10 is expected for the nominal LHC luminosity (). The photoelectron statistics effect in the muon shape response is shown. The e/mip ratio is found to be ; the e/ ratio is in the range 0.91 - 0.97. The energy loss of a muon in the calorimeter, dominated by the energy lost in the absorber, can be correlated to the energy loss in the active material. This correlation allows one to correct on an event by event basis the muon energy loss in the calorimeter and therefore reduce the low energy tails in the muon momentum distribution
Evaluation of Fermi Read-out of the ATLAS Tilecal Prototype
Prototypes of the \fermi{} system have been used to read out a prototype of the \atlas{} hadron calorimeter in a beam test at the CERN SPS. The \fermi{} read-out system, using a compressor and a 40 MHz sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of \fermi{} data. The resulting energy resolution is better than the one obtained with the standard read-out
Contribution du CNRS/IN2P3 à l'upgrade d'ATLAS. Proposition soumise au Conseil Scientifique de l'IN2P3 du 21 Juin 2012
Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter
The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle of about 11 is well-described by the expression \sigma/E = ((46.5 \pm 6.0)\%/\sqrt{E} +(1.2 \pm 0.3)\%) \oplus (3.2 \pm 0.4)~\mbox{GeV}/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied
- …
