400 research outputs found

    Modeling islet enhancers using deep learning identifies candidate causal variants at loci associated with T2D and glycemic traits.

    Get PDF
    Genetic association studies have identified hundreds of independent signals associated with type 2 diabetes (T2D) and related traits. Despite these successes, the identification of specific causal variants underlying a genetic association signal remains challenging. In this study, we describe a deep learning (DL) method to analyze the impact of sequence variants on enhancers. Focusing on pancreatic islets, a T2D relevant tissue, we show that our model learns islet-specific transcription factor (TF) regulatory patterns and can be used to prioritize candidate causal variants. At 101 genetic signals associated with T2D and related glycemic traits where multiple variants occur in linkage disequilibrium, our method nominates a single causal variant for each association signal, including three variants previously shown to alter reporter activity in islet-relevant cell types. For another signal associated with blood glucose levels, we biochemically test all candidate causal variants from statistical fine-mapping using a pancreatic islet beta cell line and show biochemical evidence of allelic effects on TF binding for the model-prioritized variant. To aid in future research, we publicly distribute our model and islet enhancer perturbation scores across ~67 million genetic variants. We anticipate that DL methods like the one presented in this study will enhance the prioritization of candidate causal variants for functional studies

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE-Glycated hemoglobin (HbA(1c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA(1c). We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA(1c) levels.RESEARCH DESIGN AND METHODS-We studied associations with HbA(1c) in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA(1c) loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.RESULTS-Ten loci reached genome-wide significant association with HbA(1c), including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 x 10(-26)), HFE (rs1800562/P = 2.6 x 10(-20)), TMPRSS6 (rs855791/P = 2.7 x 10(-14)), ANK1 (rs4737009/P = 6.1 x 10(-12)), SPTA1 (rs2779116/P = 2.8 x 10(-9)) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 x 10(-9)), and four known HbA(1c) loci: HK1 (rs16926246/P = 3.1 x 10(-54)), MTNR1B (rs1387153/P = 4.0 X 10(-11)), GCK (rs1799884/P = 1.5 x 10(-20)) and G6PC2/ABCB11 (rs552976/P = 8.2 x 10(-18)). We show that associations with HbA(1c) are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (%HbA(1c)) difference between the extreme 10% tails of the risk score, and would reclassify similar to 2% of a general white population screened for diabetes with HbA(1c).CONCLUSIONS-GWAS identified 10 genetic loci reproducibly associated with HbA(1c). Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA(1c) levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA(1c) Diabetes 59: 3229-3239, 201

    Differential expression of HSPA1 and HSPA2 proteins in human tissues; tissue microarray-based immunohistochemical study

    Get PDF
    In the present study we determined the expression pattern of HSPA1 and HSPA2 proteins in various normal human tissues by tissue-microarray based immunohistochemical analysis. Both proteins belong to the HSPA (HSP70) family of heat shock proteins. The HSPA2 is encoded by the gene originally defined as testis-specific, while HSPA1 is encoded by the stress-inducible genes (HSPA1A and HSPA1B). Our study revealed that both proteins are expressed only in some tissues from the 24 ones examined. HSPA2 was detected in adrenal gland, bronchus, cerebellum, cerebrum, colon, esophagus, kidney, skin, small intestine, stomach and testis, but not in adipose tissue, bladder, breast, cardiac muscle, diaphragm, liver, lung, lymph node, pancreas, prostate, skeletal muscle, spleen, thyroid. Expression of HSPA1 was detected in adrenal gland, bladder, breast, bronchus, cardiac muscle, esophagus, kidney, prostate, skin, but not in other tissues examined. Moreover, HSPA2 and HSPA1 proteins were found to be expressed in a cell-type-specific manner. The most pronounced cell-type expression pattern was found for HSPA2 protein. In the case of stratified squamous epithelia of the skin and esophagus, as well as in ciliated pseudostratified columnar epithelium lining respiratory tract, the HSPA2 positive cells were located in the basal layer. In the colon, small intestine and bronchus epithelia HSPA2 was detected in goblet cells. In adrenal gland cortex HSPA2 expression was limited to cells of zona reticularis. The presented results clearly show that certain human tissues constitutively express varying levels of HSPA1 and HSPA2 proteins in a highly differentiated way. Thus, our study can help designing experimental models suitable for cell- and tissue-type-specific functional differences between HSPA2 and HSPA1 proteins in human tissues

    Genetic regulatory signatures underlying islet gene expression and type 2 diabetes

    Get PDF
    The majority of genetic variants associated with type 2 diabetes (T2D) are located outside of genes in noncoding regions that may regulate gene expression in disease-relevant tissues, like pancreatic islets. Here, we present the largest integrated analysis to date of high-resolution, high-throughput human islet molecular profiling data to characterize the genome (DNA), epigenome (DNA packaging), and transcriptome (gene expression). We find that T2D genetic variants are enriched in regions of the genome where transcription Regulatory Factor X (RFX) is predicted to bind in an islet-specific manner. Genetic variants that increase T2D risk are predicted to disrupt RFX binding, providing a molecular mechanism to explain how the genome can influence the epigenome, modulating gene expression and ultimately T2D risk
    corecore