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Genome-wide association studies (GWAS) have identified >100
independent SNPs that modulate the risk of type 2 diabetes
(T2D) and related traits. However, the pathogenic mechanisms of
most of these SNPs remain elusive. Here, we examined genomic,
epigenomic, and transcriptomic profiles in human pancreatic islets
to understand the links between genetic variation, chromatin
landscape, and gene expression in the context of T2D. We first
integrated genome and transcriptome variation across 112 islet
samples to produce dense cis-expression quantitative trait loci
(cis-eQTL) maps. Additional integration with chromatin-state maps
for islets and other diverse tissue types revealed that cis-eQTLs for
islet-specific genes are specifically and significantly enriched in islet
stretch enhancers. High-resolution chromatin accessibility profiling
using assay for transposase-accessible chromatin sequencing (ATAC-
seq) in two islet samples enabled us to identify specific transcription
factor (TF) footprints embedded in active regulatory elements,
which are highly enriched for islet cis-eQTL. Aggregate allelic bias
signatures in TF footprints enabled us de novo to reconstruct TF
binding affinities genetically, which support the high-quality nature
of the TF footprint predictions. Interestingly, we found that T2D
GWAS loci were strikingly and specifically enriched in islet Regula-
tory Factor X (RFX) footprints. Remarkably, within and across inde-
pendent loci, T2D risk alleles that overlap with RFX footprints
uniformly disrupt the RFX motifs at high-information content posi-
tions. Together, these results suggest that common regulatory var-
iations have shaped islet TF footprints and the transcriptome and
that a confluent RFX regulatory grammar plays a significant role in
the genetic component of T2D predisposition.
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Type 2 diabetes (T2D) is a complex disease characterized by
pancreatic islet dysfunction and insulin resistance in periph-

eral tissues; >90% of T2D SNPs identified through genome-wide
association studies (GWASs) reside in nonprotein coding re-
gions and are likely to perturb gene expression rather than alter
protein function (1). In support of this finding, we and others
recently showed that T2D GWAS SNPs are significantly enriched
in enhancer elements that are specific to pancreatic islets (2–4).
The critical next steps to translate these islet enhancer T2D
genetic associations into mechanistic biological knowledge are
(i) identifying the putative functional SNP(s) from all of those that
are in tight linkage disequilibrium (LD), (ii) localizing their target
gene(s), and (iii) understanding the direction of effect (increased
or decreased target gene expression) conferred by the risk allele.
Two recent studies analyzed genome variation and gene expres-
sion variation across human islet samples to identify cis-expression
quantitative trait loci (cis-eQTLs) that linked T2D GWAS SNPs

to target genes (5, 6). However, the transcription factor (TF)
molecular mediators of the islet cis-eQTLs remain poorly un-
derstood and represent important links to upstream pathways
that will help untangle the regulatory complexity of T2D.

Results
Integrated Analysis of Islet Transcriptome and Epigenome Data. To
build links between SNP effects on regulatory element use and
gene expression in islets, we performed strand-specific mRNA
sequencing of 31 pancreatic islet tissue samples (Table S1) to an
average depth of 100 million paired end reads. In parallel, we
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analyzed unstranded mRNA sequencing (mRNA-seq) data for 81
islet samples from a previous study (5). We subjected both datasets to
the same quality control and processing. We additionally completed
dense genotyping of 31 islet samples and downloaded genotypes for
81 previously described islet samples (5). Phasing and imputation
yielded a final set of 6,060,203 autosomal SNPs present in both
datasets with an overall minor allele count >10. To identify SNPs
affecting gene expression within 1 Mb of the most upstream tran-
scription start site (TSS), we performed separate cis-eQTL analyses
for the two sets of islet samples and combined the cis-eQTL results
via meta-analysis. We identified 3,964 unique autosomal cis-eQTL
lead SNPs for 3,993 genes at a 5% false discovery rate (FDR).
Next, we integrated chromatin immunoprecipitation followed

by sequencing (ChIP-seq) data for five histone modifications
across islets (2, 7) and 30 diverse tissues with publicly available
datasets (Table S2) (8–10) using ChromHMM (9). This analysis
produced 13 unique and recurrent chromatin states (Fig. 1A
and Fig. S1), including promoter, enhancer, transcribed, and

repressed regions. To identify specific regulatory element sites
within these chromatin states, we profiled open chromatin in two
islets using the assay for transposase-accessible chromatin se-
quencing (ATAC-seq) (11) (Fig. 1A and Table S1). Our high-
depth ATAC-seq data (>1.4 billion reads for both islets)
allowed us to identify TF DNA footprints using the CENTIPEDE
algorithm (12). We assigned regulatory state and TF footprint
status to every islet cis-eQTL based on the annotation of SNPs with
r2 > 0.8 with the lead SNP (Fig. 1B). We used iterative conditional
analyses (7) to identify 28 T2D and related quantitative trait
GWAS SNPs that could be islet cis-eQTL signals (Fig. 1C and
Datasets S1 and S2). Given the modest cis-eQTL signals at most
of these loci, conditional analysis in larger islet samples will likely
change this list.
As an example, T2D GWAS index SNP rs1535500 occurs at

the KCNK16 locus, and the risk allele results in a glutamate
substitution at alanine 277. This change was implicated in in-
creasing the KCNK16 basal channel activity and cell surface
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Fig. 1. Integrated genomic, epigenomic, and transcriptomic analyses of human pancreatic islets. (A) An overview of diverse molecular profiling data types
used in this study. Integrative molecular profiling (open chromatin, ATAC-seq; chromatin states; RNA-seq) highlights islet-specific signatures at the KCNK17
locus. (B) Plot of strength of association (y axis) for significant islet cis-eQTLs colored by chromatin-state annotation (A) by chromosomal location (x axis);
diamonds indicate SNPs overlapping ATAC-seq footprints. An interactive version of this plot can be found at theparkerlab.org/tools/isleteqtl/. (C) Plot of
strength of islet cis-eQTL association for T2D and related trait GWAS SNPs after conditional analysis to identify variants likely independent of stronger cis-
eQTL signals for the same gene by chromosomal position and annotated as in B. The plot includes all GWAS SNP–gene pairs with FDR < 0.05 in original cis-
eQTL analysis. The dotted red line represents the P value threshold for FDR < 0.05 based on the conditional analysis. (D) Islet cis-eQTL associated with KCNK17
expression highlighted for comparison with molecular profiling tracks in A. (E) Plot of normalized KCNK17 expression in islet samples and cis-eQTL risk allele
dosage. (F) Functional validation of KCNK17 cis-eQTL at its promoter region. The haplotype containing alleles associated with T2D risk and increased KCNK17
expression (rs10947804-C, rs12663159-A, rs146060240-G, and rs34247110-A) shows higher transcriptional activity than the haplotype with nonrisk alleles. The
cloned region is indicated at the top of A. Relative luciferase activity is given as mean ± SD of four to five independent clones per haplotype normalized to
empty vector. Significance was evaluated using a two-sided t test.

2302 | www.pnas.org/cgi/doi/10.1073/pnas.1621192114 Varshney et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.1621192114.sd01.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.1621192114.sd02.xls
http://theparkerlab.org/tools/isleteqtl/
www.pnas.org/cgi/doi/10.1073/pnas.1621192114


localization when tested in a mouse model (13). Our analysis
revealed that rs1535500 is not associated with KCNK16 expres-
sion (Fig. S2). Interestingly, the rs1535500 risk allele is associ-
ated with increased expression of the neighboring potassium
channel gene KCNK17 (Fig. 1 D and E); rs1535500 is in high
LD (r2 > 0.95), with four SNPs (rs10947804, rs12663159,
rs146060240, and rs34247110) that are located in an islet pro-
moter chromatin state, and all but rs34247110 are located in an
ATAC-seq peak (Fig. 1A). Motivated by the overlap with islet
regulatory annotations, we cloned two different copies of the
473-bp DNA sequence surrounding these SNPs: one containing
the T2D risk alleles for each of four SNPs (risk haplotype) and
the other containing the nonrisk alleles (nonrisk haplotype). We
performed luciferase reporter assays in the mouse insulinoma
(MIN6) beta cell line to test the transcriptional activity of these
two clones. Both clones exhibited promoter activity, but the T2D
risk haplotype showed significantly greater (P = 0.03) tran-
scriptional activity than the nonrisk haplotype (Fig. 1F). This
result suggests that one or more of these T2D risk variants cause
increased regulatory activity in islets. These findings highlight a
complex functional genetic architecture for a single haplotype
that results in regulatory activity linked to one gene (KCNK17)
and coding variation in another (KCNK16). Together, these re-
sults illustrate how integrated analyses help to identify potential
causal SNPs associated with islet expression and T2D risk. To
enable easy, in-depth exploration of our results, we created an
interactive islet cis-eQTL and chromatin-state browser (theparkerlab.
org/tools/isleteqtl/).

Common and Islet-Specific Gene cis-eQTLs Are Enriched in Different
Chromatin States. To understand the regulatory architecture of
islet cis-eQTLs, we measured their co-occurrence with different
classes of chromatin states across diverse tissues, including
stretch enhancers, defined as enhancer chromatin states ≥3 kb
long. These segments tend to mark cell identity regions and have
been shown to harbor tissue-specific GWAS SNPs (2, 14). We
calculated genome-wide enrichment for cis-eQTL overlaps with
these features while controlling for minor allele frequency, dis-
tance to TSS, and the number of SNPs in LD (15). cis-eQTLs
were enriched in active chromatin states, such as promoter, and
genic enhancer in islets, whereas inactive states, such as poly-
comb repressed, were depleted for such overlaps across multiple
tissues (Fig. S3). Reasoning that this common enrichment pat-
tern across diverse tissues may be largely driven by cis-eQTLs of
commonly expressed genes, we sought to classify cis-eQTLs by
the islet expression specificity of their associated genes. To
measure gene expression specificity in islets, we analyzed RNA-
seq data from 16 additional tissues from the Illumina Human
Body Map 2.0 project. We used an information theory approach
to define the islet expression specificity index (iESI) (Fig. S4) (7).
iESI values near zero represent lowly and/or ubiquitously
expressed genes, whereas values near one represent genes that
are highly and specifically expressed in islets. We divided genes
into quintiles based on ascending iESI (Fig. S4). We assigned cis-
eQTLs for these genes to their respective iESI quintile and
measured enrichment of each set in chromatin annotations. In-
terestingly, although cis-eQTLs across iESI quintile bins were
similarly enriched in islet promoter states, cis-eQTL enrichment
in active and stretch enhancer states increased concomitantly
with iESI (Fig. S5). As an example, we found that the cis-eQTL
for the KCNA6 gene (Fig. S6A), which is expressed in islets with
high specificity (iESI = 0.78), overlapped islet-specific enhancer
states (Fig. S6B). This cis-eQTL does not overlap a known T2D
GWAS locus. When we restricted our enrichment analysis to
ATAC-seq peaks in islet stretch enhancer states, we saw a
stronger trend toward increasing enrichment by iESI quintile
(Fig. S5). These results indicate a strong link between active
regulatory chromatin architecture and the genetic control of cell-
specific gene expression.
To further identify and dissect regulatory regions critical for

islet-specific gene expression, we sought to distinguish between

shared and tissue-specific enhancer chromatin states. We per-
formed k-means clustering for active enhancer chromatin states
across 31 cells/tissues. This method segregated enhancer regions
based on activity across diverse tissues; for example, cluster 13 is
islet-specific, whereas cluster 3 is liver-specific (Fig. S6C).
We compared these enhancer clusters with stretch enhancer
annotations across tissues and found that tissue-specific clusters,
such as the islet-specific cluster 13, indeed displayed high en-
richment for islet stretch enhancers (Fig. S6D). Likewise, in
other tissues, tissue-specific enhancer clusters were enriched for
the corresponding tissues’ stretch enhancers (Fig. S6D). Next, we
asked if islet cis-eQTLs were enriched in specific enhancer
clusters and observed enrichment in multiple clusters (Fig. S6E).
We then stratified the cis-eQTLs by iESI quintile and repeated
this analysis. Notably, islet cis-eQTLs for genes in iESI quintile 5
only showed significant enrichment in the islet-specific enhancer
cluster 13 (P value = 1.2 × 10−8, fold enrichment = 1.91) (Fig.
S6E). Together, these results show that islet tissue-specific
genetic regulatory architecture is enriched in islet-specific en-
hancers and stretch enhancers.

Islet Expression Quantitative Trait Loci Are Enriched in Islet ATAC-Seq
Peaks and DNA Footprints. Chromatin-state maps identify regula-
tory regions, such as promoters and enhancers, but lack the
resolution to pinpoint specific sites that may be bound and
regulated by a TF. To refine the link between genetic variation,
TF binding sites, and gene expression, we leveraged the high-
resolution ATAC-seq data to identify in vivo putative TF binding
sites using CENTIPEDE as previously described (7, 12). This
approach detected high-quality footprints for many TFs, in-
cluding the general CCCTC-binding factor (CTCF) and the TF
Regulatory Factor X (RFX) (Fig. 2 A and B). Notably, we detect
RFX footprints in islet stretch enhancers near the islet-specific
(iESI = 0.94) TF RFX6 (Fig. 2A), suggesting an autoregulatory
mechanism that, based on recent studies (3, 16), may indicate
that RFX6 is an islet core transcriptional regulatory gene.
Comparing ATAC-seq profiles from islets with those of skeletal
muscle tissue (7), adipose tissue (17), and a lymphoblastoid cell
line (GM12878) (11), we found that islet ATAC-seq peaks oc-
curred preferentially in islet promoter and enhancer chromatin
states (Fig. S7). Islet cis-eQTLs were highly enriched in multiple
TF footprint motifs but were not in nonfootprint motifs (Fig. 2C
and Dataset S3). These results suggest a strong link between
SNPs at TF binding sites in relevant tissues and gene regulation.
To detect motif occurrences that could be altered by the

presence of nonreference alleles, we developed a personalized
phased SNP-aware genome motif scanning procedure (SI Mate-
rials and Methods). This method allowed us to identify motif
instances, even when multiple nonreference alleles occur within
a few base pairs of each other. We observed significant enrich-
ment for islet cis-eQTLs in the set of TF footprint motifs iden-
tified only from this haplotype phase-aware scanning approach
(that is, the motifs are missed even when a single SNP-aware
motif scanning approach is used) in both islet samples (Fig. S8).
Given the informative chromatin accessibility allelic analyses in
recent studies (18, 19), we next asked if we could recreate known
TF position weight matrices (PWMs) (Fig. 2D, row 1) based on
the allele-specific bias at heterozygous SNPs within TF footprint
motifs. We identified every heterozygous site in a given TF
footprint motif, calculated the allelic bias in ATAC-seq signal at
these positions, and retained all SNPs with significant bias (Fig.
2D, row 3 and SI Materials and Methods). We genetically
reconstructed a PWM using the degree of allelic bias for the
overrepresented alleles (Fig. 2D, row 2). This allelic bias-based
PWM (Fig. 2D, row 2) closely matched the canonical PWM for
the corresponding TF (Fig. 2D, row 1), providing an in vivo
verification of the cognate PWM. There was a larger difference
in the PWM score for the two alleles of allelic bias SNPs than for
the two alleles of matched the 1000 Genomes Project (1000G)
SNPs occurring in the same motif (Fig. S9). To further verify that
the allelic bias-based genetically reconstructed PWMs were not

Varshney et al. PNAS | February 28, 2017 | vol. 114 | no. 9 | 2303

G
EN

ET
IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF2
http://theparkerlab.org/tools/isleteqtl/
http://theparkerlab.org/tools/isleteqtl/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.1621192114.sd03.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1621192114/-/DCSupplemental/pnas.201621192SI.pdf?targetid=nameddest=SF9


simply reflecting the allelic composition of SNPs in the motifs, we
constructed PWMs using the allele count for all TF footprint het-
erozygous SNPs observed at each position (where each observed
SNP contributed two alleles) and found that the resulting PWMs
had little information and little similarity to the cognate motifs used
to scan across the genome (Fig. 2D, rows 4 and 5). Collectively,
these results reinforce the potential of ATAC-seq and allelic foot-
printing analyses to identify relevant and potentially causal TF
binding changes in the genetic control of gene expression.

T2D GWAS Loci Are Enriched in RFX Footprints, and T2D Risk Alleles
Disrupt the Motifs at Independent Locations. Given the strong en-
richment for islet cis-eQTL in diverse TF footprints, we next
sought to identify T2D GWAS SNPs that could regulate gene
expression by modulating TF binding. We found that T2D-
associated SNPs were significantly enriched in islet RFX TF
footprints (Fig. 3A and Dataset S4). In contrast, we did not see
significant enrichment of T2D-associated SNPs in islet non-
footprint RFX TF motifs or GM12878 TF footprints (Fig. 3A).
The RFX family of TFs recognizes X-box motifs and has highly
evolutionarily conserved DNA binding domains (20), which
may explain why similar motifs from many RFX family mem-
bers are enriched. A recent study found enrichment of T2D
GWAS SNPs in islet FOXA2 ChIP-seq peaks (21). We ob-
served enrichment of T2D-associated SNPs in islet FOX TF
footprints, although none passed the Bonferroni threshold of
2.5 × 10−5 (Dataset S4).
Studies of autoimmune disease have found that disease-associated

variants often occur near but not in TF motifs (22). We, there-
fore, asked if T2D-associated SNPs were enriched in regions

flanking RFX footprints motifs (n = 22). We found that regions
flanking RFX footprint motifs were enriched for T2D-associated
SNPs and that the enrichment decreased with increasing distance
from footprint motifs (Fig. S10). The flanking enrichment was
lower than in the RFX TF footprints. In contrast, we did not see
enrichment of T2D-associated SNPs in nonfootprint RFX TF
motifs or the regions flanking the nonfootprint RFX TF motifs
(Fig. S10).
We next assessed the potential effects of the risk and nonrisk

alleles for nine T2D-associated SNPs at five independent loci on
RFX TF binding (Fig. 3B). For each SNP, the nonrisk allele was
the highest probability nucleotide in the RFX PWM, and thus,
the risk allele was predicted to disrupt the motif (Fig. 3 B and C,
black boxes). At two of five loci, the T2D GWAS risk alleles
were associated with significantly increased gene expression in
our conditional eQTL analysis: KCNK17 (KCNK16 locus) (Fig. 1
B, C, and E) and ABCB9 (PITPNM2 locus) (Fig. 1C). Other loci
might not have been detectable as cis-eQTLs because of state-
specific regulation or small effect sizes. The observation that
T2D risk alleles at multiple loci confluently disrupt RFX foot-
print motifs provides a hypothesis that could explain the mech-
anism of a subset of T2D-associated variants.

Discussion
We have integrated genome, epigenome, and transcriptome
variation and created maps to better understand the genetic
control of islet gene expression. Comparison of these maps with
T2D GWAS SNPs has helped identify potential disease mech-
anisms. For example, the risk allele of the coding SNP rs1535500
has been implicated to increase KCNK16 activity and cell surface
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Fig. 2. Nucleotide resolution islet ATAC-seq profiling nominates regulatory mechanisms. (A) RFX6 locus with expression (RNA-seq), chromatin states, open
chromatin (ATAC-seq), and footprints for CTCF and RFX in islets. (B) Density plots indicating normalized sequence coverage of ATAC-seq from two human islet
samples at sites overlapping CTCF (motif = CTCF_known2) and RFX (motif = RFX2_4) motifs. (C) Log twofold enrichment of islet cis-eQTLs in TF footprint
motifs compared with their enrichment in TF nonfootprint motifs. TFs for which footprint and nonfootprint motifs overlap four or more eQTL SNPs are
shown. Blue shows significant enrichment in footprints only (Bonferroni corrected P < 0.05). No significant enrichment was observed in any TF nonfootprint
motif. (D) Reconstruction of CTCF (motif = CTCF_known2) and RFX (motif = RFX2_4) motifs using ATAC-seq TF footprint allelic bias data. Row 1: original motif
PWM. Row 2: PWM genetically reconstructed using the overrepresented alleles (and extent of overrepresentation) for SNPs with significant ATAC-seq allelic
bias. Row 3: count of nucleotides in SNPs with significant allelic bias. Row 4: PWM reconstructed using the count of nucleotides for heterozygous SNPs in the
TF footprint. Row 5: count of nucleotides in heterozygous SNPs in the TF footprint.
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localization in a mouse model (13). Other risk alleles in SNPs in high
LD with rs153550 are associated with increased expression of the
neighboring potassium channel gene KCNK17, which is not in the
mouse genome. KCNK16 and KCNK17 are two pore domain
“background” K+ channels, members of the TWIK-related alkaline
pH-activated K+ channel family (23, 24). Both genes are expressed in
islets with high specificity (KCNK16 iESI = 0.98; KCNK17 iESI =
0.76). KCNK16 has been implicated in regulating electrical excit-
ability and glucose-stimulated insulin secretion (GSIS) (13). It is
possible that the T2D risk haplotype at this locus may have multiple
effects that collectively disrupt islet K+ signaling and GSIS by si-
multaneously overactivating KCNK16 and overexpressing KCNK17.
We find that T2D GWAS-associated SNPs are significantly

enriched in RFX TF footprint motifs. We find consistent disruption of
islet RFX footprint motifs by T2D risk alleles, including at the
KCNK17 locus. Lizio et al. (25) found that knockdown ofRFX6 results
in increased expression of KCNK17, which is consistent with the T2D
risk allele disrupting TF binding and increasing target gene expression.
At other T2D GWAS loci, such as theMPHOSPH9 locus (index SNP
rs1727313), two or three T2D GWAS SNPs in high LD are each
predicted to have risk alleles that coordinately disrupt independent
RFX footprint motifs (Fig. 3 B and C). We and others (2, 26, 27)
previously described the presence of multiple SNPs in enhancers at
individual GWAS loci. Our results build on this concept to include the
possibility of multiple confluent disruptions of similar TF motifs in the
same locus. Collectively, these results indicate that T2D risk may, in
part, be propagated through genetic modulation of RFX binding in
islets. Indeed, our study shortlists only a subset of T2D-associated
variants as candidates that should be functionally dissected in vivo.
Among the RFX TFs, RFX6 is expressed in islets with high

specificity (iESI = 0.94) (Fig. S11) and involved in pancreatic
progenitor specification, endocrine cell differentiation, mainte-
nance of beta cell functional identity, and control of glucose
homeostasis (28–30). Beta cell-specific deletion of RFX6 results
in impaired insulin secretion (31, 32). Individuals who are

heterozygous for a frameshift mutation in RFX6 have increased
2-h glucose levels (33). Importantly, rare autosomal recessive
mutations that alter DNA-contacting amino acids in the DNA
binding domain of RFX6 result in Mitchell–Riley syndrome,
which is characterized by neonatal diabetes (29). Although RFX6
was not in our motif library, a recent report found it to be highly
similar to the other RFX family motifs (25), consistent with the
expectation for highly conserved DNA binding domains (20).
Our findings could represent a connection between rare coding
variation in the islet master TF RFX6 (30, 31) and common
noncoding variations in multiple target sites for this TF. The
impact of these variations mirror the expected physiological ef-
fect, with coding variants that result in neonatal diabetes and
noncoding variants that result in later-onset T2D. This study
implicates impaired RFX-dependent transcriptional responses
in genetic susceptibility to T2D and nominates mechanistic hy-
potheses about the molecular genetic pathogenesis of this com-
plex disease. Following up on the reported loci to functionally
validate this hypothesis could help in better understanding T2D
mechanisms. Given that most other GWAS SNPs are noncoding,
this approach could be used to identify other master TF and
multiple target site relationships.

Materials and Methods
A detailed description of computational and experimental analyses is pro-
vided in SI Materials and Methods. Briefly, we conducted high-depth, strand-
specific mRNA-seq and dense genotyping in human islets followed by
cis-eQTL analysis. We integrated the cis-eQTL maps with chromatin-state
annotations generated from ChIP-seq datasets for different histone modi-
fications across diverse cell types. We profiled open chromatin in two islet
samples using ATAC-seq and carried out TF footprinting using a library
of motifs.
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