183 research outputs found

    Vertigo and dizziness in children: An update

    Get PDF
    Background: Vertigo and dizziness are relatively infrequent in paediatric patients, but specific data on the prevalence of these disorders are limited and influenced by various factors, including the age of the examined population. These conditions often have a significant impact on patients’ and parents’ quality of life. The aim of this paper is to investigate the prevalence of different aetiologies of vertigo in the paediatric population through a systematic review. Methods: According to PRISMA guidelines, a systematic review of the literature was performed. Medline and Embase were searched from January 2011 through to 10 September 2021. The search yielded 1094 manuscripts, which were reduced to 7 upon the application of inclusion criteria. Results: A total of 2470 paediatric patients were evaluated by the selected papers. Vestibular Migraine was the most frequently diagnosed condition, occurring alone or in association with other diseases. Overall, audio-vestibular disorders represented the second cause of vertigo, and the prevalence appears to increase according to age growth. Over the years, even though we assisted in the amelioration of diagnostic rates, partially related to an improvement in diagnostic tools, the aetiology of vertigo remains still unclear in a variable percentage of patients. Conclusion: Vertigo in children, despite being an uncommon symptom, requires a multidisciplinary approach, often involving Paediatricians, Neurologists and Otorhinolaryngologists. A comprehensive evaluation of children suffering from vertigo is crucial for establishing a successful therapy and reducing parental worries

    Microbial influences on the small intestinal response to radiation injury

    Get PDF
    Injury to the small bowel from ionizing radiation occurs commonly in patients undergoing cancer therapy and less commonly in instances of accidental radiation overexposure. Several lines of evidence now suggest that dynamic interactions between the host’s enteric microbiota and innate immune system are important in modulating the intestinal response to radiation. Here, we will review recent developments in the area of acute radiation enteropathy and examine the current state of knowledge regarding the impact of host–microbial interactions in the process

    Sustainable exploitation of residual cynara cardunculus l. To levulinic acid and n-butyl levulinate

    Get PDF
    Hydrolysis and butanolysis of lignocellulosic biomass are efficient routes to produce two valuable bio-based platform chemicals, levulinic acid and n-butyl levulinate, which find increasing applications in the field of biofuels and for the synthesis of intermediates for chemical and pharmaceutical industries, food additives, surfactants, solvents and polymers. In this research, the ac-id-catalyzed hydrolysis of the waste residue of Cynara cardunculus L. (cardoon), remaining after seed removal for oil exploitation, was investigated. The cardoon residue was employed as-received and after a steam-explosion treatment which causes an enrichment in cellulose. The effects of the main reaction parameters, such as catalyst type and loading, reaction time, temperature and heat-ing methodology, on the hydrolysis process were assessed. Levulinic acid molar yields up to about 50 mol % with levulinic acid concentrations of 62.1 g/L were reached. Moreover, the one-pot bu-tanolysis of the steam-exploded cardoon with the bio-alcohol n-butanol was investigated, demon-strating the direct production of n-butyl levulinate with good yield, up to 42.5 mol %. These results demonstrate that such residual biomass represent a promising feedstock for the sustainable production of levulinic acid and n-butyl levulinate, opening the way to the complete exploitation of this crop

    EQUIPPING DURUM WHEAT WITH A MAJOR QTL FOR RESISTANCE TO FUSARIUM DISEASES TRANSFERRED FROM THINOPYRUM ELONGATUM AND ITS PYRAMIDING WITH VALUABLE GENES FROM TH. PONTICUM

    Get PDF
    Favoured by climate changes, Fusarium head blight (FHB), a devastati ng disease of small-grain cereals worldwide, is increasingly spreading also in unusual environments where bread wheat (BW) and durum wheat (DW) are largely culti vated. The scarcity of effi cient resistance sources within adapted germplasm is parti cularly alarming for DW, mainly uti lized for human consumpti on, hence at high risk of kernel contaminati on with health-dangerous mycotoxins. To cope with this scenario, we looked outside the wheat primary genepool and recently transferred an excepti onally eff ecti ve FHB resistance QTL (Fhb-7EL) from the 7EL chromosome arm of the wheatgrass Thinopyrum elongatum onto 7DL of BW recombinant lines. The latt er already possessed valuable genes (Lr19, Yp, yield-related QTL) from a Th. ponti cum 7el1L arm segment, distally inserted onto 7DL. BW lines with the 7el1L+7EL assembly were crossed with previously developed DW-Th. ponti cum recombinants, having small 7el1L distal segments on 7AL arms. As proved by GISH analysis, homologous pairing occurred with high frequency in the shared 7el1L region between the BW and DW recombinant chromosomes. As a result, desirable 7EL+7el1L recombinant types with 2n = 28 were isolated in the BC1 progeny to DW, aided by PCR-based markers. Homozygous recombinant plants selected in the BC2F2 progeny were challenged by Fusarium graminearum spike inoculati on to verify the Fhb-7EL QTL effi cacy into the DW background. Infecti on outcomes confi rmed what previously observed in BW, with around 90% reducti on of disease severity vs. suscepti ble controls, invariably associated with presence of the Fhb-7EL QTL. Moreover, as for the BW types, the same Fhb-7EL was found to provide the novel DW recombinants also with resistance to the crown rot disease, as from seedling infecti on with F. culmorum. Through alien segment pyramiding we succeeded in equipping DW with a very eff ecti ve barrier against diff erent Fusarium diseases and other positi ve att ributes contributi ng to yield security and safety

    First Results on the Experimental Validation of the SKA-low Prototypes Deployed in Australia Using an Airborne Test Source

    Get PDF
    As the Square Kilometre Array progresses toward the construction phase, the first prototypes of the low-frequency instrument have been deployed in Australia. To support such a crucial phase, a measurement campaign took place in the Murchison Radio-astronomy Observatory area in order to validate the electromagnetic models of the arrays by characterizing the embedded-element patterns and the array beams. A set of significant results is shown in this contribution

    A prototype model for evaluating SKA-LOW station calibration

    Get PDF
    The Square Kilometre Array telescope at low-frequency (SKA-Low) will be a phased array telescope supporting a wide range of science cases covering the frequency band 50 - 350 MHz, while at the same time asking for high sensitivity and excellent characteristics. These extremely challenging requirements resulted in a design using 512 groups of 256 log periodic dual polarized antennas each (where each group is called “station”), for a total of 131072 antennas. The 512 stations are randomly distributed mostly within a dense area around the centre of the SKA-Low, and then in 3 arms having 16 station clusters each. In preparation for the SKA Phase 1 (SKA1) System Critical Design Review (CDR), prototype stations were deployed at the Murchison Radio-astronomy Observatory (MRO) site (Western Australia) near the Murchison Widefield Array (MWA) radio telescope. The project involved multiple parties in an International collaboration building and testing different prototypes of the SKA1-Low station near the actual site. This resulted in both organisational and logistic challenges typical of a deployment of the actual telescope. The test set-up involved a phased build-up of the complex station of log-periodic antennas, by starting from the deployment of 48 antennas and related station signal processing (called AAVS1.5, where AAVS stands for Aperture Array Verification System), followed by expansion to a full station (AAVS2.0). As reference a station with dipole antennas EDA2 (EDA: Engineering Development Array) was deployed. This test set-up was used for an extensive test and evaluation programme. All test antenna configurations were simulated in detail by electromagnetic (EM) models, and the prediction of the models was further verified by appropriate tests with a drone-based radio frequency source. Astronomical observations on Sun and galaxy transit were performed with calibrated stations of both EDA2, AAVS1.5 and AAVS2.0. All 3 configurations were calibrated. EM modelling and calibration results for the full station AAVS2.0 and EM verification for the AAVS1.5 station are presented. The comparisons between the behaviour of the log-periodic antennas and the dipoles have advanced our understanding the calibration quality and the technological maturity of the future SKA1-Low array

    Analysing the Role of Fusion Power in the Future Global Energy System

    Get PDF
    This work presents the EFDA Times model (ETM), developed within the European Fusion Development Agreement (EFDA). ETM is an optimization global energy model which aims at providing the optimum energy system composition in terms of social wealth and sustainability including fusion as an alternative technology in the long term. Two framework scenarios are defined: a Base case scenario with no limits to CO2 emissions, and a 450ppm scenario with a limit of 450ppm in CO2-eq concentrations set by 2100. Previous results showed that in the Base case scenario, with no measures for CO2 emission reductions, fusion does not enter the energy system. However, when CO2 emission restrictions are imposed, the global energy system composition changes completely. In a 450ppm scenario, coal technologies disappear in a few decades, being mainly replaced by nuclear fission technologies which experience a great increase when constrained only by Uranium resources exhaustion. Fission technologies are then replaced by the fusion power plants that start in 2070, with a significant contribution to the global electricity production by 2100. To conclude the work, a sensitivity analysis will be presented on some parameters that may affect the possible role of fusion in the future global energy system

    A prototype model for evaluating SKA-LOW station calibration

    Get PDF
    The Square Kilometre Array telescope at low-frequency (SKA-Low) will be a phased array telescope supporting a wide range of science cases covering the frequency band 50 - 350 MHz, while at the same time asking for high sensitivity and excellent characteristics. These extremely challenging requirements resulted in a design using 512 groups of 256 log periodic dual polarized antennas each (where each group is called "station"), for a total of 131072 antennas. The 512 stations are randomly distributed mostly within a dense area around the centre of the SKA-Low, and then in 3 arms having 16 station clusters each. In preparation for the SKA Phase 1 (SKA1) System Critical Design Review (CDR), prototype stations were deployed at the Murchison Radio-astronomy Observatory (MRO) site (Western Australia) near the Murchison Widefield Array (MWA) radio telescope. The project involved multiple parties in an International collaboration building and testing different prototypes of the SKA1-Low station near the actual site. This resulted in both organisational and logistic challenges typical of a deployment of the actual telescope. The test set-up involved a phased build-up of the complex station of log-periodic antennas, by starting from the deployment of 48 antennas and related station signal processing (called AAVS1.5, where AAVS stands for Aperture Array Verification System), followed by expansion to a full station (AAVS2.0). As reference a station with dipole antennas EDA2 (EDA: Engineering Development Array) was deployed. This test set-up was used for an extensive test and evaluation programme. All test antenna configurations were simulated in detail by electromagnetic (EM) models, and the prediction of the models was further verified by appropriate tests with a drone-based radio frequency source. Astronomical observations on Sun and galaxy transit were performed with calibrated stations of both EDA2, AAVS1.5 and AAVS2.0. All 3 configurations were calibrated. EM modelling and calibration results for the full station AAVS2.0 and EM verification for the AAVS1.5 station are presented. The comparisons between the behaviour of the log-periodic antennas and the dipoles have advanced our understanding the calibration quality and the technological maturity of the future SKA1-Low array
    • …
    corecore