43 research outputs found
Efeitos cardiorrespiratório e analgésico da clonidina, xilazina, butorfanol, buprenorfina e tramadol, associados a lidocaína, da anestesia epidural de cães
O artigo não apresenta resumo
Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes
Zn and Co electrodes have been successfully coated with five different zeolitic imidazolate frameworks ZIFs (ZIF-4, ZIF-7, ZIF-8, ZIF-14 and ZIF-67) via the anodic dissolution method. Careful control of the reaction conditions allows for electrode coating growth; in contrast to previous reports of electrochemical ZIF growth, which have not succeeded in obtaining ZIF electrode coatings. Coating crystallinity is also shown to be heavily dependent upon reaction conditions, with amorphous rather than crystalline material generated at shorter reaction times and lower linker concentrations. Electrochemical applications for ZIF-coated electrodes are highlighted with the observation of an areal capacitance of 10.45 mF cm−2 at 0.01 V s−1 for additive-free ZIF-67 coated Co electrodes. This is superior to many reported metal organic framework (MOF)/graphene composites and to capacitance values previously reported for additive-free MOFs
A tissue engineered osteochondral composite for cartilage repair: an in vivo study
This work aimed to validate the efficacy of a tissue engineered osteochondral composite for the treatment of cartilage lesion produced in adult pigs. The osteochondral composite was manufactured by combining an osteo-compatible cylinder and a neocartilagineous tissue obtained by seeding swine articular chondrocytes into a collagen scaffold. Articular cartilage was harvested from the trochlea of six adult pigs and was enzymatically digested to isolate the chondrocytes [Deponti D.et al. 2005]. The cells were then expanded in monolayer culture in chondrogenic medium and seeded onto a collagen scaffold. The collagen scaffold was preintegrated in vitro, macroscopically and microscopically, to a an osteo-compatible cylinder. The seeded osteochondral scaffolds were left in standard culture condition for 3 weeks with the addition of growth factors. At the end of culture time the osteochondral scaffolds were surgically implanted in osteochondral lesion performed in the trochlea of the same pigs from which the cartilage was initially harvested. As control, some osteochondral lesions were treated with acellular scaffolds and others were left untreated. After 3 months, the repair tissue of the three experimental groups was macroscopically analyzed and processed for histological and biochemical analysis. The hystologic ICRS II scale showed a statistically significant difference between the three experimental groups only in the parameters regarding the cell morphology and the surface/superficial assessment: the lesion treated with the unseeded osteochondral scaffolds showed higher values in chondrocytes morphology and in the superficial layer recovery, with respect to the lesions treated with the seeded scaffolds or left untreated. The biochemical analysis showed a higher DNA content in the lesion repaired with cellular scaffold and a higher GAGs/DNA ratio in the lesions with a spontaneous repair. The result of this study demonstrate that an osteochondral scaffold was able to repair an osteochondral lesion in an in vivo model of adult pigs, showing a good integration with the surrounding tissue. The quality of the repair was higher when the scaffold was not seeded with chondrocytes, but filled with cells migrated from subchondral bone. This tissue engineered osteochondral composite could represent a valuable model for further in vivo studies on the repair of chondral/osteochondral lesion
Metal-organic framework templated electrodeposition of functional gold nanostructures
Utilizing a pair of quick, scalable electrochemical processes, the permanently porous MOF HKUST-1 was electrochemically grown on a copper electrode and this HKUST-1-coated electrode was used to template electrodeposition of a gold nanostructure within the pore network of the MOF. Transmission electron microscopy demonstrates that a proportion of the gold nanostructures exhibit structural features replicating the pore space of this ∼1.4 nm maximum pore diameter MOF, as well as regions that are larger in size. Scanning electron microscopy shows that the electrodeposited gold nanostructure, produced under certain conditions of synthesis and template removal, is sufficiently inter-grown and mechanically robust to retain the octahedral morphology of the HKUST-1 template crystals. The functionality of the gold nanostructure within the crystalline HKUST-1 was demonstrated through the surface enhanced Raman spectroscopic (SERS) detection of 4-fluorothiophenol at concentrations as low as 1 μM. The reported process is confirmed as a viable electrodeposition method for obtaining functional, accessible metal nanostructures encapsulated within MOF crystals
Modular hybrid total hip arthroplasty. Experimental study in dogs
Background: This prospective experimental study evaluated the surgical procedure and results of modular hybrid total hip arthroplasty in dogs.Methods: Ten skeletally mature healthy mongrel dogs with weights varying between 19 and 27 kg were used. Cemented modular femoral stems and uncemented porous-coated acetabular cups were employed. Clinical and radiographic evaluations were performed before surgery and at 30, 60, 90, 120, 180 and 360 days post-operation.Results: Excellent weight bearing was noticed in the operated limb in seven dogs. Dislocation followed by loosening of the prosthesis was noticed in two dogs, which were therefore properly treated with a femoral head osteotomy. Femoral fracture occurred in one dog, which was promptly treated with full implant removal and femoral osteosynthesis.Conclusions: The canine modular hybrid total hip arthroplasty provided excellent functionality of the operated limb