4,465 research outputs found
Monitoring prohemostatic treatment in bleeding patients
Acutely bleeding patients are commonly found in the trauma and major surgery scenarios. They require prompt and effective treatment to restore an adequate hemostatic pattern, to avoid serious and sometimes life-threatening complications.Different prohemostatic treatments are available, including allogeneic blood derivatives (fresh frozen plasma, platelet concentrates, and cryoprecipitates), prothrombin complex concentrates, specific coagulation factors (fibrinogen, recombinant factor XIII, recombinant activated factor VII), and drugs (protamine for patients under heparin treatment, desmopressin, antifibrinolytics).For decades, prohemostatic treatment of the acutely bleeding patient was based on empirical strategies and clinical judgment, both in terms of a correct diagnosis of the mechanism(s) leading to bleeding, and of an assessment of the effects of the treatment. This empirical strategy may lead to excessive or unnecessary use of allogeneic blood products, as well as to an incorrect, inefficacious, or even dangerous treatment. Different monitoring devices are nowadays available for guiding the diagnostic and therapeutic decision-making process in an acutely bleeding patient. This review addresses the available tools for monitoring prohemostatic treatment of the bleeding patient, with a specific respect for point-of-care tests (thromboelastography, thromboelastometry, platelet function tests, and heparin monitoring systems) at the light of the existing evidence
Quantum Gravity - Testing Time for Theories
The extreme smallness of both the Planck length, on the one side, and the
ratio of the gravitational to the electrical forces between, say, two
electrons, on the other side has led to a widespread belief that the realm of
quantum gravity is beyond terrestrial experiments. A series of classical and
quantum arguments are put forward to dispel this view. It is concluded that
whereas the smallness of the Planck length and the ratio of gravitational to
electrical forces, does play its own essential role in nature, it does not make
quantum gravity a science where humans cannot venture to probe her secrets. In
particular attention is drawn to the latest neutron and atomic interferometry
experiments, and to gravity wave interferometers. The latter, as Giovanni
Amelino-Camelia argues [Nature 398, 216 (1999)], can be treated as probes of
space-time fuzziness down to Planck length for certain quantum-gravity models
Comment on "Gravitationally Induced Neutrino-Oscillation Phases"
We critically examine the recent claim (gr-qc/9603008) of a ``new effect'' of
gravitationally induced quantum mechanical phases in neutrino oscillations. A
straightforward exercise in the Schwarzschild coordinates appropriate to a
spherically symmetric non-rotating star shows that, although there is a general
relativistic effect of the star's gravity on neutrino oscillations, it is not
of the form claimed, and is too small to be measured.Comment: Plain LaTeX, 7 pages, no figure
Piecewise Parabolic Method on a Local Stencil for Magnetized Supersonic Turbulence Simulation
Stable, accurate, divergence-free simulation of magnetized supersonic
turbulence is a severe test of numerical MHD schemes and has been surprisingly
difficult to achieve due to the range of flow conditions present. Here we
present a new, higher order-accurate, low dissipation numerical method which
requires no additional dissipation or local "fixes" for stable execution. We
describe PPML, a local stencil variant of the popular PPM algorithm for solving
the equations of compressible ideal magnetohydrodynamics. The principal
difference between PPML and PPM is that cell interface states are evolved
rather that reconstructed at every timestep, resulting in a compact stencil.
Interface states are evolved using Riemann invariants containing all transverse
derivative information. The conservation laws are updated in an unsplit
fashion, making the scheme fully multidimensional. Divergence-free evolution of
the magnetic field is maintained using the higher order-accurate constrained
transport technique of Gardiner and Stone. The accuracy and stability of the
scheme is documented against a bank of standard test problems drawn from the
literature. The method is applied to numerical simulation of supersonic MHD
turbulence, which is important for many problems in astrophysics, including
star formation in dark molecular clouds. PPML accurately reproduces in
three-dimensions a transition to turbulence in highly compressible isothermal
gas in a molecular cloud model. The low dissipation and wide spectral bandwidth
of this method make it an ideal candidate for direct turbulence simulations.Comment: 28 pages, 18 figure
Effect of preoperative P2Y12 and thrombin platelet receptor inhibition on bleeding after cardiac surgery
BACKGROUND:
Drugs that act on the platelet P2Y12 receptor are responsible for postoperative bleeding in cardiac surgery. However, protease-activated receptor (PAR) that reacts to thrombin stimulation might still be active in patients treated with P2Y12 inhibitors. Preoperative platelet function testing could possibly guide the timing of surgery. We investigated the association between P2Y12 receptor and PAR inhibition and bleeding after cardiac surgery.
METHODS:
A retrospective cohort study of 361 patients undergoing cardiac surgery and treated with P2Y12 anti-platelet agents was undertaken. All patients received a preoperative multiplate electrode aggregometry testing of platelet P2Y12 receptor activity (ADPtest) and PAR reactivity with thrombin receptor-activating peptide (TRAP) stimulation. ADPtest and TRAPtest data measured before surgery were analysed for association with postoperative bleeding (ml per 12 h) and severe postoperative bleeding.
RESULTS:
Both the ADPtest and the TRAPtest were significantly (P=0.001) associated with postoperative bleeding. A threshold of 22 U for the ADPtest yielded a negative predictive value (NPV) of 94% and a positive predictive value (PPV) of 20%, and a threshold of 75 U for the TRAPtest yielded an NPV of 95% and a PPV of 23%. In the subgroup of patients with ADPtest <22 U, TRAPtest ≥75 U was not associated with severe bleeding (NPV of 100% and PPV of 37%).
CONCLUSIONS:
In patients taking P2Y12 receptor inhibitors, residual platelet reactivity to thrombin stimulation limits the risk of severe postoperative bleeding
Some Remarks on the Neutrino Oscillation Phase in a Gravitational Field
The weak gravitational field expansion method to account for the
gravitationally induced neutrino oscillation effect is critically examined. It
is shown that the splitting of the neutrino phase into a ``kinematic'' and a
``gravitational'' phase is not always possible because the relativistic factor
modifies the particle interference phase splitting condition in a gravitational
field.Comment: 4 pages, no figure
Local and global gravity
Our long experience with Newtonian potentials has inured us to the view that
gravity only produces local effects. In this paper we challenge this quite
deeply ingrained notion and explicitly identify some intrinsically global
gravitational effects. In particular we show that the global cosmological
Hubble flow can actually modify the motions of stars and gas within individual
galaxies, and even do so in a way which can apparently eliminate the need for
galactic dark matter. Also we show that a classical light wave acquires an
observable, global, path dependent phase in traversing a gravitational field.
Both of these effects serve to underscore the intrinsic difference between
non-relativistic and relativistic gravity.Comment: LaTeX, 20 pages plus three figures in two postscript files. To appear
in a special issue of Foundations of Physics honoring Professor Lawrence
Horwitz on the occasion of his 65th birthday; A. van der Merwe and S. Raby,
Editors, Plenum Publishing Company, N.Y., 199
Does Quantum Mechanics Clash with the Equivalence Principle - and Does it Matter?
With an eye on developing a quantum theory of gravity, many physicists have
recently searched for quantum challenges to the equivalence principle of
general relativity. However, as historians and philosophers of science are well
aware, the principle of equivalence is not so clear. When clarified, we think
quantum tests of the equivalence principle won't yield much. The problem is
that the clash/not-clash is either already evident or guaranteed not to exist.
Nonetheless, this work does help teach us what it means for a theory to be
geometric.Comment: 12 page
Importance of spinal deformity index in risk evaluation of VCF (vertebral compression fractures) in obese subjects: prospective study.
Introduction
Obesity and osteoporosis share many features and recent studies have identified many similarities suggesting common pathophysiological mechanisms. Obesity is associated with a higher risk of non-traumatic fractures despite bone mineral density (BMD) being normal or even increased.
Materials and methods
54 obese subjects were analyzed (51 ± 16 years, 10 males, 44 females). Spinal deformity index (SDI) is a semi-quantitative method that may be a surrogate index of bone microarchitecture. SDI index was higher in patients than in controls. In 87.5 % of patients and 10 % of controls we found morphometric vertebral fractures, despite a DEXA Tscore not diagnostic of osteoporosis.
Conclusion
The objective of this study was to assess in obese patients levels of 25OH vitamin D, parathyroid hormone, serum and urinary calcium (Ca) and phosphorus (P), BMD, and SDI. 87.5 % of the obese subjects present nontraumatic vertebral fractures and reduced bone quality as measured by SDI
New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves
In Newtonian and relativistic hydrodynamics the Riemann problem consists of
calculating the evolution of a fluid which is initially characterized by two
states having different values of uniform rest-mass density, pressure and
velocity. When the fluid is allowed to relax, one of three possible
wave-patterns is produced, corresponding to the propagation in opposite
directions of two nonlinear hydrodynamical waves. New effects emerge in a
special relativistic Riemann problem when velocities tangential to the initial
discontinuity surface are present. We show that a smooth transition from one
wave-pattern to another can be produced by varying the initial tangential
velocities while otherwise maintaining the initial states unmodified. These
special relativistic effects are produced by the coupling through the
relativistic Lorentz factors and do not have a Newtonian counterpart.Comment: 4 pages, 5 figure
- …
