1,754 research outputs found

    Spin diffusion of correlated two-spin states in a dielectric crystal

    Get PDF
    Reciprocal space measurements of spin diffusion in a single crystal of calcium fluoride (CaF2_2) have been extended to dipolar ordered states. The experimental results for the component of the spin diffusion parallel with the external field are DD=29±3×1012D_{D}^{||}=29 \pm 3 \times 10^{-12} cm2^{2}/s for the [001] direction and DD=33±4×1012D_{D}^{||}=33 \pm 4 \times 10^{-12} cm2^{2}/s for the [111] direction. The diffusion rates for dipolar order are significantly faster than those for Zeeman order and are considerably faster than predicted by simple theoretical models. It is suggested that constructive interference in the transport of the two spin state is responsible for this enhancement. As expected the anisotropy in the diffusion rates is observed to be significantly less for dipolar order compared to the Zeeman case.Comment: 4 pages, 2 figures. Resubmitted to PRL - new figure added / discussion expande

    Hydrodynamic approach to coherent nuclear spin transport

    Full text link
    We develop a linear response formalism for nuclear spin diffusion in a dipolar coupled solid. The theory applies to the high-temperature, long-wavelength regime studied in the recent experiments of Boutis et al. [Phys. Rev. Lett. 92, 137201 (2004)], which provided direct measurement of interspin energy diffusion in such a system. A systematic expansion of Kubo's formula in the flip-flop term of the Hamiltonian is used to calculate the diffusion coefficients. We show that this approach is equivalent to the method of Lowe and Gade [Phys. Rev. 156, 817 (1967)] and Kaplan [Phys. Rev. B 2, 4578 (1970)], but has several calculational and conceptual advantages. Although the lowest orders in this expansion agree with the experimental results for magnetization diffusion, this is not the case for energy diffusion. Possible reasons for this disparity are suggested.Comment: 7 pages, REVTeX4; Published Versio

    Conditions for the Quantum to Classical Transition: Trajectories vs. Phase Space Distributions

    Full text link
    We contrast two sets of conditions that govern the transition in which classical dynamics emerges from the evolution of a quantum system. The first was derived by considering the trajectories seen by an observer (dubbed the ``strong'' transition) [Bhattacharya, et al., Phys. Rev. Lett. 85: 4852 (2000)], and the second by considering phase-space densities (the ``weak'' transition) [Greenbaum, et al., Chaos 15, 033302 (2005)]. On the face of it these conditions appear rather different. We show, however, that in the semiclassical regime, in which the action of the system is large compared to \hbar, and the measurement noise is small, they both offer an essentially equivalent local picture. Within this regime, the weak conditions dominate while in the opposite regime where the action is not much larger than Planck's constant, the strong conditions dominate.Comment: 8 pages, 2 eps figure

    Parameter scaling in the decoherent quantum-classical transition for chaotic systems

    Full text link
    The quantum to classical transition has been shown to depend on a number of parameters. Key among these are a scale length for the action, \hbar, a measure of the coupling between a system and its environment, DD, and, for chaotic systems, the classical Lyapunov exponent, λ\lambda. We propose computing a measure, reflecting the proximity of quantum and classical evolutions, as a multivariate function of (,λ,D)(\hbar,\lambda,D) and searching for transformations that collapse this hyper-surface into a function of a composite parameter ζ=αλβDγ\zeta = \hbar^{\alpha}\lambda^{\beta}D^{\gamma}. We report results for the quantum Cat Map, showing extremely accurate scaling behavior over a wide range of parameters and suggest that, in general, the technique may be effective in constructing universality classes in this transition.Comment: Submitte

    Suspension and Measurement of Graphene and Bi2Se3 Atomic Membranes

    Full text link
    Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in acids that are used to dissolve underlying substrates. Here we present a versatile and powerful multi-level lithographical technique to suspend atomic membranes, which can be applied to the vast majority of substrate, membrane and electrode materials. Using this technique, we fabricated suspended graphene devices with Al electrodes and mobility of 5500 cm^2/Vs. We also demonstrate, for the first time, fabrication and measurement of a free-standing thin Bi2Se3 membrane, which has low contact resistance to electrodes and a mobility of >~500 cm^2/Vs

    Why highly expressed proteins evolve slowly

    Get PDF
    Much recent work has explored molecular and population-genetic constraints on the rate of protein sequence evolution. The best predictor of evolutionary rate is expression level, for reasons which have remained unexplained. Here, we hypothesize that selection to reduce the burden of protein misfolding will favor protein sequences with increased robustness to translational missense errors. Pressure for translational robustness increases with expression level and constrains sequence evolution. Using several sequenced yeast genomes, global expression and protein abundance data, and sets of paralogs traceable to an ancient whole-genome duplication in yeast, we rule out several confounding effects and show that expression level explains roughly half the variation in Saccharomyces cerevisiae protein evolutionary rates. We examine causes for expression's dominant role and find that genome-wide tests favor the translational robustness explanation over existing hypotheses that invoke constraints on function or translational efficiency. Our results suggest that proteins evolve at rates largely unrelated to their functions, and can explain why highly expressed proteins evolve slowly across the tree of life.Comment: 40 pages, 3 figures, with supporting informatio

    Xenopus fraseri: Mr. Fraser, where did your frog come from?

    Get PDF
    A comprehensive, accurate, and revisable alpha taxonomy is crucial for biodiversity studies, but is challenging when data from reference specimens are difficult to collect or observe. However, recent technological advances can overcome some of these challenges. To illustrate this, we used modern approaches to tackle a centuries-old taxonomic enigma presented by Fraser’s Clawed Frog, Xenopus fraseri, including whether X. fraseri is different from other species, and if so, where it is situated geographically and phylogenetically. To facilitate these inferences, we used high-resolution techniques to examine morphological variation, and we generated and analyzed complete mitochondrial genome sequences from all Xenopus species, including >150-year-old type specimens. Our results demonstrate that X. fraseri is indeed distinct from other species, firmly place this species within a phylogenetic context, and identify its minimal geographic distribution in northern Ghana and northern Cameroon. These data also permit novel phylogenetic resolution into this intensively studied and biomedically important group. Xenopus fraseri was formerly thought to be a rainforest endemic placed alongside species in the amieti species group; in fact this species occurs in arid habitat on the borderlands of the Sahel, and is the smallest member of the muelleri species group. This study illustrates that the taxonomic enigma of Fraser’s frog was a combined consequence of sparse collection records, interspecies conservation and intraspecific polymorphism in external anatomy, and type specimens with unusual morphology

    Text Messaging for Disease Monitoring in Childhood Nephrotic Syndrome

    Get PDF
    © 2019 International Society of Nephrology Introduction: There is limited information on effective disease monitoring for prompt interventions in childhood nephrotic syndrome. We examined the feasibility and effectiveness of a novel text messaging system (SMS) for disease monitoring in a multicenter, prospective study. Methods: A total of 127 patients results, symptoms, and medication adherence were sent to a designated caregiver (n = 116) or adolescent patient (n = 3). Participants responded by texting. Feasibility of SMS was assessed by SMS adoption, retention, and engagement, and concordance between participant-reported results and laboratory/clinician assessments. The number of disease relapses and time-to-remission data captured by SMS were compared with data collected by conventional visits. Results: A total of 119 of 127 (94%) patients agreed to SMS monitoring. Retention rate was 94%, with a median follow-up of 360 days (interquartile range [IQR] 353–362). Overall engagement was high, with a median response rate of 87% (IQR, 68–97). Concordance between SMS-captured home urine protein results and edema status with same-day in-person study visit was excellent (kappa values 0.88 and 0.92, respectively). SMS detected a total of 108 relapse events compared with 41 events captured by scheduled visits. Median time to remission after enrollment was 22 days as captured by SMS versus 50 days as captured by scheduled visits. Conclusion: SMS was well accepted by caregivers and adolescent patients and reliably captured nephrotic syndrome disease activity between clinic visits. Additional studies are needed to explore the impact of SMS on disease outcomes
    corecore