259 research outputs found

    Supporting public involvement in interview and other panels: a systematic review.

    Get PDF
    BACKGROUND: Members of the public are increasingly being invited to become members of a variety of different panels and boards. OBJECTIVE: This study aimed to systematically search the literature to identify studies relating to support or training provided to members of the public who are asked to be members of an interview panel. SEARCH STRATEGY: A systematic search for published and unpublished studies was carried out from June to September 2015. The search methods included electronic database searching, reference list screening, citation searching and scrutinizing online sources. INCLUSION CRITERIA: We included studies of any design including published and unpublished documents which outlined preparation or guidance relating to public participants who were members of interview panels or representatives on other types of panels or committees. DATA SYNTHESIS: Results were synthesised via narrative methods. MAIN RESULTS: Thirty-six documents were included in the review. Scrutiny of this literature highlighted ten areas which require consideration when including members of the public on interview panels: financial resources; clarity of role; role in the interview process; role in evaluation; training; orientation/induction; information needs; terminology; support; and other public representative needs such as timing, accessibility and support with information technology. DISCUSSION AND CONCLUSIONS: The results of the review emphasize a range of elements that need to be fully considered when planning the involvement of public participants on interview panels. It highlights potential issues relating to the degree of involvement of public representatives in evaluating/grading decisions and the need for preparation and on-going support

    Spatial mapping of band bending in semiconductor devices using in-situ quantum sensors

    Get PDF
    Band bending is a central concept in solid-state physics that arises from local variations in charge distribution especially near semiconductor interfaces and surfaces. Its precision measurement is vital in a variety of contexts from the optimisation of field effect transistors to the engineering of qubit devices with enhanced stability and coherence. Existing methods are surface sensitive and are unable to probe band bending at depth from surface or bulk charges related to crystal defects. Here we propose an in-situ method for probing band bending in a semiconductor device by imaging an array of atomic-sized quantum sensing defects to report on the local electric field. We implement the concept using the nitrogen-vacancy centre in diamond, and map the electric field at different depths under various surface terminations. We then fabricate a two-terminal device based on the conductive two-dimensional hole gas formed at a hydrogen-terminated diamond surface, and observe an unexpected spatial modulation of the electric field attributed to a complex interplay between charge injection and photo-ionisation effects. Our method opens the way to three-dimensional mapping of band bending in diamond and other semiconductors hosting suitable quantum sensors, combined with simultaneous imaging of charge transport in complex operating devices.Comment: This is a pre-print of an article published in Nature Electronics. The final authenticated version is available online at https://dx.doi.org/10.1038/s41928-018-0130-

    The non-vanishing effect of detuning errors in dynamical decoupling based quantum sensing experiments

    Get PDF
    Characteristic dips appear in the coherence traces of a probe qubit when dynamical decoupling (DD) is applied in synchrony with the precession of target nuclear spins, forming the basis for nanoscale nuclear magnetic resonance (NMR). The frequency of the microwave control pulses is chosen to match the qubit transition but this can be detuned from resonance by experimental errors, hyperfine coupling intrinsic to the qubit, or inhomogeneous broadening. The detuning acts as an additional static field which is generally assumed to be completely removed in Hahn echo and DD experiments. Here we demonstrate that this is not the case in the presence of finite pulse-durations, where a detuning can drastically alter the coherence response of the probe qubit, with important implications for sensing applications. Using the electronic spin associated with a nitrogen-vacancy centre in diamond as a test qubit system, we analytically and experimentally study the qubit coherence response under CPMG and XY8 dynamical decoupling control schemes in the presence of finite pulse-durations and static detunings. Most striking is the splitting of the NMR resonance under CPMG, whereas under XY8 the amplitude of the NMR signal is modulated. Our work shows that the detuning error must not be neglected when extracting data from quantum sensor coherence traces

    Spin properties of dense near-surface ensembles of nitrogen-vacancy centres in diamond

    Get PDF
    We present a study of the spin properties of dense layers of near-surface nitrogen-vacancy (NV) centres in diamond created by nitrogen ion implantation. The optically detected magnetic resonance contrast and linewidth, spin coherence time, and spin relaxation time, are measured as a function of implantation energy, dose, annealing temperature and surface treatment. To track the presence of damage and surface-related spin defects, we perform in situ electron spin resonance spectroscopy through both double electron-electron resonance and cross-relaxation spectroscopy on the NV centres. We find that, for the energy (4−304-30~keV) and dose (5×1011−10135\times10^{11}-10^{13}~ions/cm2^2) ranges considered, the NV spin properties are mainly governed by the dose via residual implantation-induced paramagnetic defects, but that the resulting magnetic sensitivity is essentially independent of both dose and energy. We then show that the magnetic sensitivity is significantly improved by high-temperature annealing at ≥1100∘\geq1100^\circC. Moreover, the spin properties are not significantly affected by oxygen annealing, apart from the spin relaxation time, which is dramatically decreased. Finally, the average NV depth is determined by nuclear magnetic resonance measurements, giving ≈10\approx10-17~nm at 4-6 keV implantation energy. This study sheds light on the optimal conditions to create dense layers of near-surface NV centres for high-sensitivity sensing and imaging applications.Comment: 12 pages, 7 figure

    Bendable X-ray Optics for High Resolution Imaging

    Get PDF
    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments
    • …
    corecore