2,466 research outputs found

    A feasibility study: California Department of Forestry and Fire Protection utilization of infrared technologies for wildland fire suppression and management

    Get PDF
    NASA's JPL has completed a feasibility study using infrared technologies for wildland fire suppression and management. The study surveyed user needs, examined available technologies, matched the user needs with technologies, and defined an integrated infrared wildland fire mapping concept system configuration. System component trade-offs were presented for evaluation in the concept system configuration. The economic benefits of using infrared technologies in fire suppression and management were examined. Follow-on concept system configuration development and implementation were proposed

    Development of a Pre-Driven Recovery Evaluation Program for Longwall Operations

    Get PDF
    Many longwall coordinators are examining the use of pre-driven recovery roadways. This method, if performed successfully can improve the overall efficiency and safety of moving longwall equipment from panel to panel. However, it is difficult to assess the feasibility of using predriven recovery unless extensive research is carried out or a consultant is used to analyse the particular situation. A number of previous case studies have been analysed to discover which parameters have the greatest influence on the success of pre-driven recovery. Floor strength, Coal Mine Roof Rating (CMRR), extraction depth, Roof Density Index (RDI), standing support and mining rate were the main parameters impacting on the successful implementation of pre-driven recovery roadways. These parameters have been incorporated into a program that was developed to assess the feasibility of using pre-driven recovery roadways. The Pre-driven Recovery Evaluation Program (PREP) is simple to operate and it will enable new longwall mining operations as well as current operations to quickly determine the suitability of the method to their site

    Gratings for Increasing Solid-State Laser Gain and Efficiency

    Get PDF
    We introduce new concepts for increasing the efficiency of solid state lasers by using gratings deposited on laser slabs or disks. The gratings improve efficiency in two ways: (1) by coupling out of the slab deleterious amplified spontaneous emission (ASE) and (2) by increasing the absorption efficiency of pump light. The gratings also serve as antireflective coatings for the extracting laser beam. To evaluate the potential for such coatings to improve laser performance, we calculated optical properties of a 2500 groove/mm, tantala-silica grating on a 1cm x 4cm x 8cm titanium-doped sapphire slab and performed ray-trace calculations for ASE and pump light. Our calculations show substantial improvements in efficiency due to grating ASE-coupling properties. For example, the gratings reduce pump energy required to produce a 0.6/cm gain coefficient by 9%, 20% and 35% for pump pulse durations of 0.5 {micro}s, 1{micro}s and 3{micro}s, respectively. Gratings also increase 532-nm pump-light absorption efficiency, particularly when the product slab overall absorption is small. For example, when the single-pass absorption is 1 neper, absorption efficiency increases from 66%, without gratings, to 86%, when gratings are used

    Speed and Accuracy of Static Image Discrimination by Rats

    Get PDF
    When discriminating dynamic noisy sensory signals, human and primate subjects achieve higher accuracy when they take more time to decide, an effect attributed to accumulation of evidence over time to overcome neural noise. We measured the speed and accuracy of twelve freely behaving rats discriminating static, high contrast photographs of real-world objects for water reward in a self-paced task. Response latency was longer in correct trials compared to error trials. Discrimination accuracy increased with response latency over the range of 500-1200ms. We used morphs between previously learned images to vary the image similarity parametrically, and thereby modulate task difficulty from ceiling to chance. Over this range we find that rats take more time before responding in trials with more similar stimuli. We conclude that rats' perceptual decisions improve with time even in the absence of temporal information in the stimulus, and that rats modulate speed in response to discrimination difficulty to balance speed and accuracy

    Climate Change and the Integrity of Science

    Get PDF
    We are deeply disturbed by the recent escalation of political assaults on scientists in general and on climate scientists in particular. All citizens should understand some basic scientific facts. There is always some uncertainty associated with scientific conclusions; science never absolutely proves anything. When someone says that society should wait until scientists are absolutely certain before taking any action, it is the same as saying society should never take action. For a problem as potentially catastrophic as climate change, taking no action poses a dangerous risk for our planet

    4-Ï€-Photocyclization of 1,2-Dihydropyridazines: An Approach to Bicyclic 1,2-Diazetidines with Rich Synthetic Potential.

    Get PDF
    The 4-Ï€-photocyclization of a range of 1,2-dihydropyridazines is described, generating bicyclic 1,2-diazetidines in high yields on multigram scale. The key bicyclic 1,2-diazetidines are versatile synthetic intermediates and were easily converted into a range of novel derivatives, including functionalized 1,2-diazetidines, cyclobutenes, cyclobutanes, and 1,3-dienes

    Timescales of spike-train correlation for neural oscillators with common drive

    Full text link
    We examine the effect of the phase-resetting curve (PRC) on the transfer of correlated input signals into correlated output spikes in a class of neural models receiving noisy, super-threshold stimulation. We use linear response theory to approximate the spike correlation coefficient in terms of moments of the associated exit time problem, and contrast the results for Type I vs. Type II models and across the different timescales over which spike correlations can be assessed. We find that, on long timescales, Type I oscillators transfer correlations much more efficiently than Type II oscillators. On short timescales this trend reverses, with the relative efficiency switching at a timescale that depends on the mean and standard deviation of input currents. This switch occurs over timescales that could be exploited by downstream circuits
    • …
    corecore