16 research outputs found

    Hysteresis at low Reynolds number: the onset of 2D vortex shedding

    Full text link
    Hysteresis has been observed in a study of the transition between laminar flow and vortex shedding in a quasi-two dimensional system. The system is a vertical, rapidly flowing soap film which is penetrated by a rod oriented perpendicular to the film plane. Our experiments show that the transition from laminar flow to a periodic K\'arm\'an vortex street can be hysteretic, i.e. vortices can survive at velocities lower than the velocity needed to generate them.Comment: RevTeX file 4 pages + 5 (encapsulated postscript) figures. to appear in Phys.Rev.E, Rapid Communicatio

    Improving additive manufacturing performance by build orientation optimization

    Get PDF
    Additive manufacturing (AM) is an emerging type of production technology to create three-dimensional objects layer-by-layer directly from a 3D CAD model. AM is being extensively used in several areas by engineers and designers. Build orientation is a critical issue in AM since it is associated with the part accuracy, the number of supports required and the processing time to produce the object. This paper presents an optimization approach to solve the part build orientation problem taking into account some characteristics or measures that can affect the accuracy of the part, namely the volumetric error, the support area, the staircase effect, the build time, the surface roughness and the surface quality. A global optimization method, the Electromagnetism-like algorithm, is used to solve the part build orientation problem.The authors are grateful to the anonymous referees for their fruitfulcomments and suggestions. This work has been supported and developed under the FIBR3Dproject - Hybrid processes based on additive manufacturing of composites with long or shortfibers reinforced thermoplastic matrix (POCI-01-0145-FEDER-016414), supported by theLisbon Regional Operational Programme 2020, under the PORTUGAL 2020 PartnershipAgreement, through the European Regional Development Fund (ERDF). This work hasbeen also supported by national funds through FCT - Funda ̧c ̃ao para a Ciˆencia e Tecnologiawithin the Project Scope: UID/CEC/00319/201

    Vortex-induced vibrations of a long flexible circular cylinder

    No full text

    Experimental study of vortex-induced vibrations of a cylinder near a rigid plane boundary in steady flow

    Get PDF
    In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carried out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-critical flow regime; (2) with increasing gap-to-diameter ratio (e (0)/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/f (n) ) has a slight variation for the case of larger values of e (0)/D (e (0)/D > 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylinder between the larger gap-to-diameter ratios (e (0)/D > 0.66) and the smaller ones (e (0)/D < 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of V (r) number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of V (r) and the frequency ratio (f/f (n) ) become larger

    Effect of mass ratio on hydrodynamic response of a flexible cylinder

    No full text
    The effect of the mass ratio on the flow-induced vibration (FIV) of a flexible circular cylinder is experimentally investigated in a towing tank. A Tygon tube with outer and inner diameters of 7.9 mm and 4.8 mm, respectively, was employed for the study. The tube was connected to a carriage and towed from rest to a steady speed up to 1.6 m/s before slowing down to rest again over a distance of 1.6 m in still water. Reynolds number based on the cylinder’s outer diameter was 800–13,000, and the reduced velocity (velocity normalized by the cylinder’s natural frequency and outer diameter) spanned from 2 to 25. When connected, the cylinder was elongated from 420 mm to 460 mm under an axial pre-tension of 11 N. Based on the cylinder’s elongated length, the aspect ratio (ratio of the cylinder’s length to outer diameter) was calculated as 58. Three mass ratios (ratio of the cylinder’s structural mass to displaced fluid mass, m*) of 0.7, 1.0, and 3.4 were determined by filling the cylinder’s interior with air, water, and alloy powder (nickel-chromium-boron matrix alloy), respectively. An optical method was adopted for response measurements. Multi-frequency vibrations were observed in both in-line (IL) and cross-flow (CF) responses; at high Reynolds number, vibration modes up to the 3rd one were identified in the CF response. The mode transition was found to occur at a lower reduced velocity for the highest tested mass ratio. The vibration amplitude and frequency were quantified and expressed with respect to the reduced velocity. A significant reduced vibration amplitude was found in the IL response with increasing mass ratios, and only initial and upper branches existed in the IL and CF response amplitudes. The normalized response frequencies were revealed to linearly increase with respect to the reduced velocity, and slopes for linear relations were found to be identical for the three cases tested
    corecore