22 research outputs found

    Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    Get PDF
    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI

    Efficacy of newly isolated and highly potent bacteriophages in a mouse model of extensively drug-resistant Acinetobacter baumannii bacteraemia.

    Get PDF
    Bacteraemia can be caused by Acinetobacter baumannii (A. baumannii), with clinical manifestations ranging from transient bacteraemia to septic shock. Extensively drug-resistant A. baumannii (XDRAB) strains producing the New Delhi metallo-ß-lactamase, which confers resistance to all ß-lactams including carbapenems, have emerged. Infected patients suffer increased mortality, morbidity and length of hospitalisation. The lack of new antimicrobials has led to a renewed interest in phage therapy, the so-called forgotten cure. Accordingly, we tested new lytic bacteriophages in a Galleria mellonella and a mouse model of XDRAB-induced bacteraemia. Galleria mellonella were challenged with 5.10 <sup>5</sup> CFU of the XDRAB strain FER. Phages vB_AbaM_3054 and vB_AbaM_3090 were administrated alone or in combination 30min after bacterial challenge. Saline and imipenem were injected as controls. Mice were intraperitoneally (i.p.) challenged with 6.10 <sup>7</sup> CFU of A. baumannii FER. vB_AbaM_3054 and vB_AbaM_3090 were administrated i.p. alone or in combination 2h after bacterial challenge. Saline and imipenem were injected as controls. Larvae and mice survival were followed for 7 days and compared with Log-Rank (Mantel-Cox) and Gehan-Breslow-Wilcoxon tests. Phage-based treatments showed high efficacy in larvae (ca. 100% survival at 80h) and mice (ca. 100% survival at day 7) compared with the untreated controls (0% survival at 48h and 24h in larvae and mice, respectively). The present data reporting efficacy of phage therapy in a mouse model of bacteraemia support the development of phage-based drugs to manage infection due to multi-drug resistant A. baumannii and particularly XDRAB

    Correction to: Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis

    No full text
    Following the publication of this article [1], the authors noted two typographical errors: one in Table 1 with regard to the location of the Basilisk Phage, which was incorrectly captured as “Kutaisis, country of Georgia Utah, USA” but should be “Utah, USA”

    Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis

    No full text
    Abstract Background In the present study, we sequenced the complete genomes of three novel bacteriophages v_B-Bak1, v_B-Bak6, v_B-Bak10 previously isolated from historical anthrax burial sites in the South Caucasus country of Georgia. We report here major trends in the molecular evolution of these phages, which we designate as “Basilisk-Like-Phages” (BLPs), and illustrate patterns in their evolution, genomic plasticity and core genome architecture. Results Comparative whole genome sequence analysis revealed a close evolutionary relationship between our phages and two unclassified Bacillus cereus group phages, phage Basilisk, a broad host range phage (Grose JH et al., J Vir. 2014;88(20):11846-11860) and phage PBC4, a highly host-restricted phage and close relative of Basilisk (Na H. et al. FEMS Microbiol. letters. 2016;363(12)). Genome comparisons of phages v_B-Bak1, v_B-Bak6, and v_B-Bak10 revealed significant similarity in sequence, gene content, and synteny with both Basilisk and PBC4. Transmission electron microscopy (TEM) confirmed the three phages belong to the Siphoviridae family. In contrast to the broad host range of phage Basilisk and the single-strain specificity of PBC4, our three phages displayed host specificity for Bacillus anthracis. Bacillus species including Bacillus cereus, Bacillus subtilis, Bacillus anthracoides, and Bacillus megaterium were refractory to infection. Conclusions Data reported here provide further insight into the shared genomic architecture, host range specificity, and molecular evolution of these rare B. cereus group phages. To date, the three phages represent the only known close relatives of the Basilisk and PBC4 phages and their shared genetic attributes and unique host specificity for B. anthracis provides additional insight into candidate host range determinants
    corecore