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 Bacteremia can be caused by Acinetobacter baumannii 

 Extensively drug-resistant A. baumannii (XDRAB) strains have emerged 

 The lack of new antimicrobials led to a renewed interest into phage therapy 

 Phage therapy rescued mice with bacteremia induced by an XDRAB strain 

 

Abstract 

Objectives. Bacteremia can be caused by Acinetobacter baumannii with clinical manifestations 

ranging from transient bacteremia to septic shock. Extensively drug-resistant A. baumannii 

(XDRAB) strains producing the New Delhi metallo-ß-lactamase, which confers resistance to all ß-

lactams including carbapenems, have emerged and infected patients suffer increased mortality, 

morbidity and length of hospitalization. The lack of new antimicrobials led to a renewed interest 

into phage therapy, the so-called forgotten cure. Accordingly, we tested new lytic bacteriophages 

in a Galleria mellonella and a mouse model of XDRAB-induced bacteremia. Methods. Galleria 

mellonella were challenged with 5.105 CFU of the XDRAB strain FER. Phages vB_AbaM_3054 

and vB_AbaM_3090 were administrated alone or in combination 30 min. after bacterial challenge. 

Saline and imipenem were injected as controls. Mice were challenged i.p. with 6.107 CFU of A. 

baumannii FER. vB_AbaM_3054 and vB_AbaM_3090 were administrated i.p. alone or in 

combination 2 h after bacterial challenge. Saline and imipenem were injected as controls. Larvae 

and mice survival were followed for 7 days and compared with Log-Rank (Mantel-Cox) and 

Gehan-Breslow-Wilcoxon tests.  

 

Results. Phage-based treatments showed high efficacy in larvae (ca. 100% survival at 80 h) and 

mice (ca. 100% survival at day 7) compared to the untreated control (0% survival at 48 h and 24 

h in larvae and mice, respectively).  
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Conclusions. The present data reporting efficacy of phage therapy in a mouse model of 

bacteremia support the development of phage-based drugs to manage infection due to multi-drug 

resistant A. baumannii and particularly XDRAB. 

 

Keywords: A. baumannii; bacteriophage; phage therapy; bacteremia; sepsis; XDRAB; MDRAB. 
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1. Introduction 

Despite naturally present on human skin1, the aerobic Gram-negative bacterium Acinetobacter 

baumannii is associated with major outbreaks of nosocomial infections, especially in severely ill 

patients hospitalized in intensive care units (ICUs)2. It produces various types of infections such 

as bacteremia, pneumonia, endocarditis, meningitis and skin, soft-tissues and urinary tract 

infections. In view of its extraordinary capacity to escape currently available antibiotics, it has been 

classified amongst the “ESKAPE” pathogens (Enterococcus faecium, Staphylococcus aureus, 

Klebsellia pneumoniae, A. baumannii, and Enterobacter species)3,4. Infectious diseases 

specialists consider this bacterium as an emerging threat more worrying than methicillin-resistant 

S. aureus (MRSA) and a recent study involving 27 ICUs from nine European countries listed it the 

third most common pathogen encountered in patients admitted with or having developed 

nosocomial pneumonia5. Tigecycline, the first representative of the new glycylcycline class of 

antibiotics6,7, showed therapeutic efficacy against multidrug resistant A. baumannii (MDRAB), but 

several reports of breakthrough infections warranted caution for its use against this pathogen8-10. 

Moreover, extensively drug-resistant A. baumannii (XDRAB) strains producing the New Delhi 

metallo-ß-lactamase, which confers resistance to all ß-lactams including last resort carbapenems, 

have very recently emerged11,12 and infected patients have increased mortality, morbidity and 

length of hospitalization13. Of major concern, there is a worrying lack of new agents with new 

targets or mechanisms of action against MDR Gram-negative bacteria, and only two such potential 

molecules were identified in early stage of development in 200914. Therefore, the time has come 

for global commitment to develop new antibacterial drugs for treating MDR Gram-negative 

associated infections, and MDRAB associated infections in particular. Accordingly, several 

preventive and therapeutic strategies are considered, amongst which the promising phage therapy 

approach15.  In the present study, we characterized two newly isolated bacteriophages against A. 

baumannii and assessed their activity in vitro and in vivo in Galleria mellonella and in a mouse 

ACCEPTED M
ANUSCRIP

T



model of bacteremia. Their remarkable efficacy either as mono-therapy or in combination 

compared to imipenem in the mouse model combined with optimal in silico safety profiles suggest 

these phages could be developed as alternatives for the treatment of A. baumannii-invasive 

infections. 

2. Materials and methods 

2.1. Bacterial strains and growth conditions 

The OXA-23 and AmpC multidrug resistant A. baumannii strain FER (FER)16 kindly provided by 

Patrice Nordmann was chosen for the in vivo experiments.  In addition, 82 A. baumannii clinical 

isolates collected at the University hospital of Lausanne (CHUV) were obtained from the Institute 

of microbiology of the University of Lausanne (IMUL) and investigated in this study (Table S1). 

The 83 isolates were grown in Luria Broth (LB) at 37°C and 200 rpm for 16 h and on LB agar (LA) 

plates aerobically at 37°C for 24 h. 

 

2.2. Antibiotic susceptibility 

The A. baumannii strain collection was provided with antibiograms previously determined using 

the Vitek-2 apparatus with AST-N420 card (Biomérieux SA, Marcy l’Etoile, France) and interpreted 

according to the most recent EUCAST clinical breakpoints17 (Table S1). 

 

2.3. Isolation of bacteriophages  

Phages were amplified from samples of 12.5 mL raw sewage water (Vidy wastewater treatment 

plant, Lausanne, Switzerland) mixed with 1.5 mL of LB 10X and 1 mL of an overnight (o/n) culture 

of strain FER. After 24 h at 37°C and 200 rpm, amplification mixture was centrifuged at 4000 g for 

15 min. Supernatant was filtered through 0.45 µm syringe filters (Cobetter Lab, Hangzhou, China) 

and stored at 4°C until further use. Supernatant was further investigated through double-layer 

assays to obtain individual Plaque Forming Units (PFU). Briefly, 0.2 mL of bacterial o/n culture 

and 0.1 mL serial dilutions of supernatant were mixed in 4 mL LB-soft agar and poured on top of 
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LA plates. Individuals PFU were picked and mixed in 5 mL LB supplemented with 250 µL of an 

o/n culture of FER. After 24 h at 37°C, mixture was centrifuged at 4000 rpm for 15 min. and filter 

sterilized through 0.22 µm syringe filters. The filtrate was processed through double-layer assay 

as described above and a second PFU was picked. The procedure was repeated at least three 

times to ensure selection of individual phages, which were stored at 4°C until further use.  

 

2.4. Determination of host ranges 

Each phage was tested on each A. baumannii strain of our collection using classical drop test 

assay. Briefly, a strain was poured in a layer of soft agar and 5 µL drops of phage preparations 

were deposited on top of the solidified layer. After 24 h incubation at 37°C, plates were read by 

eye and lysis zones scored CL (Clear Lysis), SCL (Semi-Clear Lysis) or OL (Opaque Lysis). For 

FER, which was chosen for the in vivo tests, serial dilutions of stock solution were deposited in 

order to check for infectivity. 

 

2.5. Phage adsorption  

Exponentially growing A. baumannii FER (108 CFU/mL) were mixed with corresponding phages 

at MOI of 1 and incubated at 37°C in a water-bath. 100 µL of the mixture was collected every 5 

min. for 60 min. and diluted 100-time in LB supplemented with 4% (vol/vol) chloroform. For each 

tube, phage titer was determined through double-layer assay using A. baumannii FER as host 

strain. The rate of adsorption was calculated accordingly. Experiments were performed in 

triplicate. 

 

2.6. Electron microscopy 

Morphology of phage particles was studied using a JEOL 100C electron microscope (Jeol, 

Akishima-Shi, Tokyo, Japan). Phage suspension (109-1010 PFU/mL) was transferred onto carbon-

coated copper grids for 30 sec. to let particles settle and stained with 1% uranyl-acetate for 40 s. 
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Filter paper was used to wick off excess of sample. Grids were examined at different 

magnifications. 

 

2.7. Full genome sequencing and analysis 

Phage genomic DNA was extracted and purified using a classical phenol/chloroform extraction 

method18. 

 

2.8. Illumina Sequencing and reads assembly  

vB_AbaM_3054 genomic DNA fragment sequencing libraries was prepared using the TruSeq 

Nano DNA LT Library Preparation Kit (Illumina; San Diego, USA) according to the supplied 

protocol and using 200 ng of genomic DNA. The resulting library was 100 nt paired-end sequenced 

on the Illumina HiSeq 2500 using TruSeq PE Cluster Kit v4 reagents and TruSeq SBS Kit v4 

reagents. Sequencing data were processed using the Illumina Pipeline Software version 1.84. 

After adapter trimming using trimmomatic-0.36, assembly was done automatically using spades19. 

 

2.9. PacBio sequencing and assembly  

Genomic DNA of phage vB_AbaM_3090 was sequenced through Pacific Bioscience (PacBio) 

sequencing. The DNA was sheared in a Covaris g-TUBE (Covaris, Woburn, MA, USA) to obtain 

20 kb fragments. After shearing the DNA size distribution was checked on a Fragment Analyzer 

(Advanced Analytical Technologies, Ames, IA, USA). 1.3 µg of the sheared DNA was used to 

prepare a SMRTbell library with the PacBio SMRTbell Template Prep Kit 1 (Pacific Biosciences, 

Menlo Park, CA, USA) according to the manufacturer's recommendations. The library was 

sequenced on one SMRT cell with P6/C4 chemistry and MagBeads on a PacBio RSII system 

(Pacific Biosciences, Menlo Park, CA, USA) at 240 min movie length. The PacBio module 

"RS_HGAP_Assembly.2" in SMRTpipe version v2.3.0 was used to assemble the obtained reads.  
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2.10. Genome annotation 

Open reading Frames (ORF, minimum size of 100 amino acids) and tRNA encoding genes were 

identified on phage genomes and annotated using ORF Finder20 and Prokka21. In addition, phage 

genomic sequences were checked for genes coding virulence factors and antibiotic resistance 

using the blast interface of the Virulence Factors of Pathogenic Bacteria database 

(www.mgc.ac.cn/VFs) and the ResFinder tool from the Center for Genomic Epidemiology 

(https://cge.cbs.dtu.dk//services/ResFinder), respectively. 

 

2.11. In vitro turbidity assays in 96-well plates 

FER was grown in 10 mL LB at 37°C and 200 rpm for 16 h. After centrifugation of the culture at 

RT and 4000 rpm for 20 min. the bacterial pellet was thoroughly resuspended in 50 mL saline. 10 

µL of this bacterial suspension (i.e. 106 CFU) were mixed in 96-well plates with 10 µL of phage 

suspensions at different concentrations (i.e. 104, 106 and 108 PFU) or 10 µL of imipenem at 5 

mg/mL (final concentration of 167 µg/ml) and 280 µL LB. The microtiter plate was placed in a 

microplate reader set at 37°C and first measurement at OD600nm was taken immediately. Additional 

measurements were taken every 10 min for 24 h. Microplate was shacked for 3 sec. before each 

measurement. All experiments were performed in triplicate. 

 

2.12. A. baumannii experimental bacteremia in Galleria mellonella  

Wax moths (n = 18) were challenged in the last right pseudopod with 5.105 CFU of FER in 5 µL 

saline. Phages (5.107 PFU in 10 µL saline; MOI = 100) were administrated in the last left 

pseudopod alone or in combination, by a single bolus injection 30 min after bacterial challenge. 

Saline and imipenem at 5 mg/mL were injected as controls. The survival rates of larvae were 

followed over a period of 80 h and compared with Log-Rank (Mantel-Cox) and Gehan-Breslow-
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Wilcoxon tests using GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego, 

CA, USA, www.graphpad.com). 

2.13. A. baumannii experimental bacteremia in mice 

The mice model of bacteremia was carried out in strict accordance with the recommendations of 

the Swiss Federal Act on Animal Protection. The protocol was approved by the Committee on the 

Ethics of Animal Experiments of the Consumer and Veterinary Affairs Department of the State of 

Vaud (Permit N°3065). A total of 30 CD1 Swiss female mice (Charles River Laboratories, 

L’Arbresle, France), with an average weight of 21±1 g, were used in this study. The animal sample 

size (n) was estimated to be 6 with the formula for dichotomous variables (expected pc = 1 and pe 

= 0.2; with pc = death event in control group, pe = death event in experimental group and C=7.85) 

22. In order to induce bacteremia, the mice were challenged i.p. with 6.107 CFU of FER in 100 µL 

saline. Bacteremia state at the time of the initial treatment injection was validated after aseptically 

removal of the left kidney and spleen from three mice 2 h after i.p injection of 6.107 CFU of FER in 

100 µL saline. Organs were homogenized in 1 ml of saline and briefly centrifuged, and 

supernatants were plated on blood agar plates to determine the number of viable organisms in 

tissues. Phages (6.109 PFU in 200 µL saline; MOI of 100) were administrated i.p. alone or in 

combination by a single bolus injection 2 h after bacterial challenge. 200 µL saline and 200 µL 

imipenem at 5 mg/mL (ca. 50 mg/kg) were injected as controls. The survival rates of animals were 

followed over a period of 7 days and compared with Log-Rank (Mantel-Cox) and Gehan-Breslow-

Wilcoxon tests using GraphPad Prism version 5.00 for Windows. 
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3. Results 

3.1. Isolation and characterization of A. baumannii phages  

Two phages, named vB_AbaM_3054 and vB_AbaM_3090, were successfully isolated through 

classical amplification from samples of wastewater. Phage vB_AbaM_3054 formed small clear 

plaques surrounded by halos and phage vB_AbaM_3090 formed tiny clear plaques with no halo 

on a lawn of FER (Fig. S1). 

 

3.2. Phage host range and adsorption rate  

The host range of both phages was first quickly screened by drop test on the collection of 83 

clinical isolates (Table S2). Both phages revealed very strain specific with CL or SCL lysis on 

10.8% and 14.5% of the strains tested (Table S2). In addition, since FER was chosen for the in 

vivo study, infectivity of both phages was checked by drop tests of serially diluted stock solutions 

(non-diluted to 108 dilutions). As shown in Fig. S2, both phages formed well-separated plaques on 

FER at high dilutions (i.e up to 108 and up to 104 for vB_AbaM_3054 and vB_AbaM_3090, 

respectively) confirming infectivity of both phages on FER. Examination of phage particles 

morphology by TEM revealed that both phages belong to the myoviridae family. The size of 

vB_AbaM_3054 head is 102 x 94 nm and the size of the tail is 88 x 22 nm (Figure 1A). The size 

of vB_AbaM_3090 head is 113 x 108 nm and the size of the tail is 130 x 13 nm (Fig. 1B). The 

adsorption rate was 894% and 952% in 10 minutes for vB_AbaM_3054 and vB_AbaM_3090, 

respectively. 

 

3.3. Phage genome sequencing and analysis 

Both phages harbored a double-stranded DNA genome successfully purified by classical 

phenol/chloroform extraction.  
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3.3.1. vB_AbaM_3054 

Sequencing of the genome of vB_AbaM_3054 through Illumina 100bp paired-end sequencing 

yielded a draft genome consisting of 4 contigs of 16’549 bp (vB_AbaM_3054_contig1), 14’254 bp 

(vB_AbaM_3054_contig2), 13’184 bp (vB_AbaM_3054_contig3) and 5’456 bp 

(vB_AbaM_3054_contig4) for a total length of 49’443 bp. As listed in Table S3, blastn against the 

“nr” database identified very few homologies with already published sequences of phage 

vB_AbaP_B1 (Genbank accession N° MF033347.1) and phage SH-Ab 15599 (Genbank 

accession N° MH517022.1). A detailed analysis revealed presence of 47 ORFs of more than 100 

amino acids (aa) on the draft genome, amongst which 14 matched phage proteins using blastp 

against the “non-redundant protein sequences (nr)” database. While two structural genes (i.e. tail 

fiber proteins) were identified on vB_AbaM_3054_contig1, ORFs possibly involved in replication 

(DNA ligase, hydrolase, DNA topoisomerase and exonuclease) were identified on the three other 

contigs. ORF7 on vB_AbaM_3054_contig4 encodes for a protein showing significant homology 

with several cell wall hydrolases and likely corresponds to the lysin of vB_AbaM_3054. 

 

3.3.2. vB_AbaM_3090 

Sequencing of vB_AbaM_3090 through PacBio technology yielded a single contig of 104’796 bp. 

Blastn identified vB_AbaM_phiAbaA1 (GenBank accession N°KJ628499) as a very close neighbor 

with 98% identity over 98% query coverage. 166 ORFs and 13 tRNA genes were identified on 

vB_AbaM_3090 genome. 157 ORFs were assigned ‘hypothetical proteins’ (not shown).  

 

3.4. Minimum inhibitory concentration (MIC) and in vitro turbidity assays  

MIC of imipenem was 32 mg/L for FER (not shown). The effects of the different treatments on the 

in vitro bacterial growth are presented in Fig. 2. For clarity of the graphics, only hourly 

measurements are reported in the figures. vB_AbaM_3054 showed very similar patterns of 

bacterial growth inhibition independently to the MOI (ranging from 0.01 to 100), except that the 
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initial bacterial growth at 1 h was progressively inhibited with full inhibition at MOI of 100 (Fig. 2A, 

open squares). Of note, a secondary bacterial regrowth starting at ca. 7 h was observed at all MOI 

(Fig. 2A). Bacterial growth inhibition by vB_AbaM_3090 followed very similar patterns at the three 

different MOI and the initial bacterial growth was also fully inhibited at MOI of 100 (Fig. 2B, open 

squares). As for vB_AbaM_3054, the secondary growth started at ca. 7 h but followed a less steep 

slope (Fig.2B and Fig. 2C). In view of these first results with monophage preparations, MOI of 100 

was considered for the in vivo models. Therefore, combination of both phages at this MOI was 

further tested in vitro. As seen in Fig. 2C, the combination of both phages at MOI of 100 was highly 

synergistic and fully prevented secondary growth for up to 24 h (Fig. 2C; open diamonds). Similar 

results were observed in vitro with imipenem at the high dose of 5 mg/mL (>5 times the MIC), a 

concentration mimicking recommended in vivo dosage (for convenience only reported in Fig. 2A; 

open circles).  

 

3.5. Therapeutic efficacy in a Galleria mellonella model of A. baumannii infection 

Efficacy of both phages at MOI of 100, either alone or in combination was further compared to a 

single bolus injection of the standard of care imipenem on the survival of Galleria mellonella 

challenged with ca. 5.105 CFU of A. baumannii FER (Fig. 3). This bacterial inoculum led to 0% 

survival of the wax moths at 48 h in the untreated control group. When injected 30 min. after 

bacterial challenge, all treatments led to significant improved survival at 80 h (p<0.0001, compared 

to the untreated control for all treatments) and the effect was not significantly different between 

the treatments (100%, ca. 83%, ca. 89% and ca. 95% survival at 80 h for vB_AbaM_3054, 

vB_AbaM_3090, combination of both phages and imipenem, respectively. p = 0.3222). 

 

 

3.6. Therapeutic efficacy in a mouse model of A. baumannii bacteremia 

ACCEPTED M
ANUSCRIP

T



Three mice were challenged i.p. with 6.107 CFU of FER in 100 µL saline. Animals were euthanized 

2 h post-infection and organs were homogenized and tested for presence of viable bacteria. We 

found >105 CFU/g in the spleen and kidney (data not shown), demonstrating infection 

dissemination and bacteremic state of the mice at this time point. Efficacy of both phages at MOI 

of 100, either alone or in combination was further compared to a single bolus injection of imipenem 

on the survival of mice challenged i.p. with ca. 6.107 CFU of FER (n= 6, Fig. 4). According to the 

bacteremic state previously demonstrated, this bacterial inoculum led to 0% survival of the animals 

at day 1 in the untreated control group. Phage treatments injected 2 h post-infection led to 

improved survival at day 7 (p<0.0001, compared to the untreated control for all phage treatments) 

and the effect was not significantly different between treatments (80%, 100% and 80%, for 

vB_AbaM_3054, vB_AbaM_3090 and the combination of both phages, respectively. p = 0.5913). 

In opposite, with ca. 17% survival at day 7, a single bolus injection of 50 mg/kg imipenem failed 

to rescue the mice (p = 0.3173 compared to the untreated control). 

 

4. Discussion 

Bacteremia is one of the most significant infections caused by A. baumannii with clinical 

manifestations ranging from transient bacteremia to septic shock with high mortality23 and phage 

therapy has been documented on multiple occasion as a promising alternative to treat A. 

baumannii infections. Indeed, the therapeutic potential of anti-A. baumannii phages has been 

demonstrated since 2015 but mainly in rodent models of wound24-26 and lung27-29 infections. 

Interestingly, a very recent human case report demonstrated efficacy of phage therapy (as adjunct 

to antibiotherapy) in a patient suffering from a disseminated resistant A. baumannii Infection30. Of 

note, it has also recently been shown that strategies using prophage-derived lysin or derived 

peptides can rescue mice from otherwise lethal A. baumannii induced bacteremia31,32. 

Accordingly, we aimed at evaluating the therapeutic potential of phages in a mouse model of 

bacteremia. Following our effort to isolate lytic A. baumannii phages, we focused here more 
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particularly on two very potent candidates belonging to the Myoviridae family, namely 

vB_AbaM_3054 and vB_AbaM_3090, harboring strong in vitro lytic activity against the A. 

baumannii clinical strain FER, representative of the commonly encountered serotype 2. The 

clinical relevance of this strain has previously been shown when it was found to harbor a plasmid 

(pFER) carrying a blaOXA-23 gene conferring higher levels of carbapenem resistance than the one 

conferred by the recombinant plasmid pOXA-23 or pOXA-5816. 

Full genome sequencing of both phages revealed their potential to be considered as antibacterial 

agents administrable to human since neither virulence nor resistance genes could have been 

detected33. In addition, absence of integrase genes argues for strict lytic life style of both phages. 

Taken together, these data consolidated their potential safety. In vitro tests revealed the 

therapeutic potential of the two phages, which were both able to dramatically inhibit growth of FER 

in turbidity assays at low (0.01), medium (1) and high (100) MOI. The curve profiles were highly 

similar at the different MOI, except that the initial bursts of bacterial growth, which occurred at low 

MOIs were totally inhibited at a high MOI of 100. Of note, in all conditions, bacterial regrowth was 

observed after 7 h, likely due to the selection of phage-resistant bacterial variants as often 

observed in vitro. A. baumannii FER was confirmed to be resistant to imipenem with MIC of 32 

mg/L and it was therefore without surprise that this carbapenem performed very well in vitro at a 

concentration of 167 µg/mL (i.e. >5-times the MIC of 32 mg/L) with no detectable bacterial growth 

over 24 h. In vitro results for phages at MOI of 100 and imipenem transposed to Galleria mellonella 

in which all treatments achieved also high protection with ca. 100% survival of the larvae 80 h 

after the bacterial challenge. Interestingly, Galleria mellonella successfully predicted the outcome 

of phage therapy in mice in which all phage-based treatments achieved ca. 100% survival rate 7 

days after bacterial challenge. This observation was in agreement with previous studies reporting 

Galleria mellonella as a useful pre-screening model in frame of the evaluation of phages as 

antimicrobials before testing in more sophisticated mammalian models34,35. However, imipenem 

at 5 mg/mL rescued 95% of the Galleria mellonella and therefore failed to predict the outcome in 
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mice, in which it was inactive. This discrepancy might be explained by a bioavailability of imipenem 

in Galleria mellonella similar to the test tube situation and/or differences in the immune systems 

in comparison to mice36. Therefore, this result poses the question of Galleria mellonella as a 

relevant in vivo model in this setting.  

Contrasting in vitro results (i.e. secondary growth) with high in vivo potencies of monophage 

preparations question the clinical relevance of potential phage-resistant mutants selected in vitro. 

Additional experiments are needed to fully characterize the selected mutants in order to determine 

whether the observed discrepancies could be explained by a high fitness cost leading to the 

incapacity of the mutants selected in vitro to survive or infect in vivo as recently reported by our 

team for Pseudomonas aeruginosa37 and reviewed by others38. 

Keeping in mind all the remaining challenges and unanswered questions, we are convinced that 

the present data showing efficacy of phage therapy in a mouse model of XDRAB bacteremia could 

pave the road to the development of phage therapy to manage systemic infections due to MDRAB 

and XRDAB. 
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Figure Legends 

 

Figure 1. Electronic microscopy micrographs of phages. A. vB_AbaM_3054; scale bar 

represents 80 nm B. vB_AbaM_3090; scale bar represents 100 nm. Morphology of phage particles 

was studied using a JEOL 100C electron microscope (Jeol, Akishima-Shi, Tokyo, Japan).  
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Figure 2. Effect of different treatments on the growth of A. baumannii strain FER in a 96-

well plate turbidity assay. OD600nm was recorded every 10 min over 24 h. For clarity, only one 

measurement per hour is indicated. A. vB_AbaM_3054 at different MOI and imipenem. Control 

(NaCl, filled circles); vB_AbaM_3054 (MOI of 100, open squares); vB_AbaM_3054 (MOI of 1, 

open triangles); vB_AbaM_3054 (MOI of 0.01, crosses); imipenem (167 µg/mL, open circles). B. 

vB_AbaM_3090 at different MOI. Control (NaCl, filled circles); vB_AbaM_3090 (MOI of 100, 

open squares); vB_AbaM_3090 (MOI of 1, open triangles); vB_AbaM_3090 (MOI of 0.01, 

crosses). C. vB_AbaM_3054 and vB_AbaM_3090 at MOI of 100 alone or in combination. 

Control (NaCl, filled circles); vB_AbaM_3054 (MOI of 100, open squares); vB_AbaM_3090 (MOI 

of 100, open triangles); vB_AbaM_3054 + vB_AbaM_3090 (MOI of 50 each, open diamonds). 

Each dot represents the mean of three independent experiments. 
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Figure 3. Efficacy of phage therapy in a Galleria mellonella model of A. baumannii 

bacteremia. Wax moths (n = 18) were injected in the last right pseudopod with 5.105 CFU A. 

baumannii FER. 30 min. later, they received in the left pseudopod either NaCl (control, closed 

circles), vB_AbaM_3054 (MOI of 100, open triangles), vB_AbaM_3090 (MOI of 100, closed 

triangles), vB_AbaM_3054 + vB_AbaM_3090 (MOI of 50 each, open squares) or imipenem (5 

mg/mL, closed diamonds). Larvae were monitored for survival over a period of 80 h and results 

were plotted as Kaplan–Meier survival curves. Curves were compared with the log-rank (Mantel–

Cox) and Gehan–Breslow–Wilcoxon tests. All treatments groups were significantly different 

compared to the untreated control group (p<0.0001). There were no statistically significant 

differences between treatments (p = 0.3222). 

 

Figure 4. Efficacy of phage therapy in a mouse model of A. baumannii bacteremia. CD1 

Swiss mice (n = 6) were injected i.p. with ca. 6.107 CFU of A. baumannii FER. At 2 h post infection, 

animals received an intraperitoneal injection of either NaCl (control, closed circles), 

vB_AbaM_3054 (MOI of 100, open triangles), vB_AbaM_3090 (MOI of 100, closed triangles), 
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vB_AbaM_3054 + vB_AbaM_3090 (MOI of 50 each, open squares) or imipenem (5 mg/mL = 50 

mg/kg, closed diamonds). Mice were monitored for survival over a period of seven days and 

results were plotted as Kaplan–Meier survival curves. Survival curves were compared with the 

log-rank (Mantel–Cox) and Gehan–Breslow–Wilcoxon tests. All phage treatments groups were 

significantly different compared to the untreated control group (p<0.0001). There were no 

statistically significant differences between phage treatments (p = 0.5913). Imipenem group was 

not statistically significantly different to the untreated control group (p = 0.3173). 
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