969 research outputs found
Magnetospheric considerations for solar system ice state
The current lattice configuration of the water ice on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water ice from crystalline to amorphous. It is not known to what extent this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water ice may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∼MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous ice content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline ice is by far the dominant ice state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the ice on the Saturnian satellites also corroborates the correlation
Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration
A suite of eight rocks analyzed by the Curiosity Rover while it was stopped at the Rocknest sand ripple shows the greatest chemical divergence of any potentially sedimentary rocks analyzed in the early part of the mission. Relative to average Martian soil and to the stratigraphically lower units encountered as part of the Yellowknife Bay formation, these rocks are significantly depleted in MgO, with a mean of 1.3 wt %, and high in Fe, averaging over 20 wt % FeO_T, with values between 15 and 26 wt % FeO_T. The variable iron and low magnesium and rock texture make it unlikely that these are igneous rocks. Rock surface textures range from rough to smooth, can be pitted or grooved, and show various degrees of wind erosion. Some rocks display poorly defined layering while others seem to show possible fractures. Narrow vertical voids are present in Rocknest 3, one of the rocks showing the strongest layering. Rocks in the vicinity of Rocknest may have undergone some diagenesis similar to other rocks in the Yellowknife Bay Formation as indicated by the presence of soluble calcium phases. The most reasonable scenario is that fine-grained sediments, potentially a mixture of feldspar-rich rocks from Bradbury Rise and normal Martian soil, were lithified together by an iron-rich cement
A decade's overview of Io's volcanic activity
Over the past decade some aspects of Io's volcanic activity have changed greatly, while others have essentially remained constant. This contrast has emerged from our study of multi-wavelength, infrared, observations of Io's thermal emission. From 1983 to 1992 we observed the disk integrated flux density of Io from the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Our spectral coverage allows us to separate out the emission components due to volcanic thermal anomalies which are warmer than the background emission caused by solar heating. Our temporal coverage allows us to resolve individual eruptions and also to obtain the disk-integrated flux density as a function of longitude (or, equivalently, orbital phase angle). Characteristics that persisted over the decade involve Loki's location and intensity of emission, the leading hemisphere emission, and the average heat flow. The variable aspects of Io over the decade include Loki's hotter area(s) and the outbursts in the leading hemisphere
Recommended from our members
Transcending adversity: resilience in volunteer firefighters
Purpose: The purpose of this paper is to present a theory of psychological resilience in volunteer firefighters.
Design/methodology/approach: Using a constructivist grounded theory (CGT) approach, the qualitative study engaged a purposive sample of eight firefighters in Canada, conducted in-depth interviews and analysed the data using comparative methods.
Findings: The results provided unique insights into resilience in firefighters and revealing resilience as multidimensional, complex, dynamic and contextual. Six core concepts interrelate to construct resilience: relationships, personal resources, meaning-making, leadership, culture and knowledge.
Practical implications: The findings of this research offer a framework for practical integration of resilience theory into workplace health policy and practice. The theory was co-created with firefighters hence is contextually sound to this population, but applicable to other emergency and health services.
Originality/value: Volunteer firefighters are under-represented in the literature, despite facing intermittent and frequently intense work-related stressors; this research begins to address the gap in the literature. As well, previous resilience theories have noted relationships between some components, but there is little evidence linking categories; this theory more patently represents the complex nature of resilience in volunteer firefighters
Recommended from our members
Fluorine in the Pahrump outcrop, Gale Crater: Implications for fluid circulation and alteration
Climate Change Impacts on Freshwater Wetland Hydrology and Vegetation Cover Cycling Along a Regional Aridity Gradient
Global mean temperature may increase up to 6°C by the end of this century and together with precipitation change may steepen regional aridity gradients. The hydrology, productivity, and ecosystem services from freshwater wetlands depend on their future water balance. We simulated the hydrology and vegetation dynamics of wetland complexes in the North American Prairie Pothole Region with the WETLANDSCAPE model. Simulations for 63 precipitation × temperature combinations spanning 6°C warming and −20% to +20% annual precipitation change at 19 locations along a mid-continental aridity gradient showed that aridity explained up to 99% of the variation in wetland stage and hydroperiod for all wetland permanence types, and in vegetation cycling for semipermanent wetlands. The magnitude and direction of hydrologic responses depended on whether climate changes increased or decreased water deficits. Warming to 6°C and 20% less precipitation increased wetland water deficits and more strongly decreased wetland stage and hydroperiod from historic levels at low aridity, especially in semipermanent wetlands, where peak vegetation cycling (Cover Cycle Index, CCI) also shifted to lower aridity. In contrast, 20% more precipitation decreased water deficits, increasing wetland stage and hydroperiod most strongly in shallow wetlands at high aridity, but filling semipermanent wetlands and reducing CCI at low aridity. All climate changes narrowed the range of aridity favorable to high productivity. Climate changes that reduce water deficits may help maintain wetlands at high aridity at the expense of those at low aridity, but with warming certain, increased deficits are more likely and will help maintain wetlands at lower aridity but exacerbate loss of wetlands at high aridity. Thus, there is likely not a universally applicable approach to mitigating climate change impacts on freshwater wetlands across regional aridity gradients. Conservation strategies need to account for aridity-specific effects of climate change on freshwater wetland ecosystems
Deep space 2: The Mars Microprobe Mission
The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at similar to 190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and similar to 50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 1.0 cm scale layers
A review of potential contaminants in Australian livestock feeds and proposed guidance levels for feed
Contaminants of man-made and natural origin need to be managed in livestock feeds to protect the health of livestock and that of human consumers of livestock products. This requires access to information on the transfer from feed to food to inform risk profiles and assessments, and to guide management interventions such as regulation or Hazard Analysis Critical Control Point approaches. This paper reviews contaminants of known and potential concern in the production of livestock feeds in Australia and compares existing but differing state and national regulatory standards with international standards. The contaminants considered include man-made organic chemical contaminants (e.g. legacy pesticides), elemental contaminants (e.g. arsenic, cadmium, lead), phytotoxins (e.g. gossypol) and mycotoxins (e.g. aflatoxins). Reference is made to scientific literature and evaluations by regulators to propose maximum levels that can be used for guidance by those involved in managing contamination incidents or developing feed safety programs. © 2013 CSIRO
- …