3,866 research outputs found
Dynamics of correlations due to a phase noisy laser
We analyze the dynamics of various kinds of correlations present between two
initially entangled independent qubits, each one subject to a local phase noisy
laser. We give explicit expressions of the relevant quantifiers of correlations
for the general case of single-qubit unital evolution, which includes the case
of a phase noisy laser. Although the light field is treated as classical, we
find that this model can describe revivals of quantum correlations. Two
different dynamical regimes of decay of correlations occur, a Markovian one
(exponential decay) and a non-Markovian one (oscillatory decay with revivals)
depending on the values of system parameters. In particular, in the
non-Markovian regime, quantum correlations quantified by quantum discord show
an oscillatory decay faster than that of classical correlations. Moreover,
there are time regions where nonzero discord is present while entanglement is
zero.Comment: 7 pages, 3 figures, accepted for publication in Phys. Scripta,
special issue for CEWQO 2011 proceeding
Classical Evolution of Quantum Elliptic States
The hydrogen atom in weak external fields is a very accurate model for the
multiphoton excitation of ultrastable high angular momentum Rydberg states, a
process which classical mechanics describes with astonishing precision. In this
paper we show that the simplest treatment of the intramanifold dynamics of a
hydrogenic electron in external fields is based on the elliptic states of the
hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical
symmetry group of the Kepler problem. Moreover, we also show that classical
perturbation theory yields the {\it exact} evolution in time of these quantum
states, and so we explain the surprising match between purely classical
perturbative calculations and experiments. Finally, as a first application, we
propose a fast method for the excitation of circular states; these are
ultrastable hydrogenic eigenstates which have maximum total angular momentum
and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.
Stability from Structure: Metabolic Networks Are Unlike Other Biological Networks
In recent work, attempts have been made to link the structure of biochemical networks to their complex dynamics. It was shown that structurally stable network motifs are enriched in such networks. In this work, we investigate to what extent these findings apply to metabolic networks. To this end, we extend a previously proposed method by changing the null model for determining motif enrichment, by using interaction types directly obtained from structural interaction matrices, by generating a distribution of partial derivatives of reaction rates and by simulating enzymatic regulation on metabolic networks. Our findings suggest that the conclusions drawn in previous work cannot be extended to metabolic networks, that is, structurally stable network motifs are not enriched in metabolic networks
From a systems theory of sociology to modeling the onset and evolution of criminality
This paper proposes a systems theory approach to the modeling of onset and
evolution of criminality in a territory, which aims at capturing the complexity
features of social systems. Complexity is related to the fact that individuals
have the ability to develop specific heterogeneously distributed strategies,
which depend also on those expressed by the other individuals. The modeling is
developed by methods of generalized kinetic theory where interactions and
decisional processes are modeled by theoretical tools of stochastic game
theory.Comment: 20 page
Energy Dissipation Burst on the Traffic Congestion
We introduce an energy dissipation model for traffic flow based on the
optimal velocity model (OV model). In this model, vehicles are defined as
moving under the rule of the OV model, and energy dissipation rate is defined
as the product of the velocity of a vehicle and resistant force which works to
it.Comment: 15 pages, 19 Postscript figures. Reason for replacing: This is the
submitted for
Time-evolving measures and macroscopic modeling of pedestrian flow
This paper deals with the early results of a new model of pedestrian flow,
conceived within a measure-theoretical framework. The modeling approach
consists in a discrete-time Eulerian macroscopic representation of the system
via a family of measures which, pushed forward by some motion mappings, provide
an estimate of the space occupancy by pedestrians at successive time steps.
From the modeling point of view, this setting is particularly suitable to
treat nonlocal interactions among pedestrians, obstacles, and wall boundary
conditions. In addition, analysis and numerical approximation of the resulting
mathematical structures, which is the main target of this work, follow more
easily and straightforwardly than in case of standard hyperbolic conservation
laws, also used in the specialized literature by some Authors to address
analogous problems.Comment: 27 pages, 6 figures -- Accepted for publication in Arch. Ration.
Mech. Anal., 201
- âŠ