49 research outputs found
Impact flux of asteroids and water transport to the habitable zone in binary star systems
By now, observations of exoplanets have found more than 50 binary star
systems hosting 71 planets. We expect these numbers to increase as more than
70% of the main sequence stars in the solar neighborhood are members of binary
or multiple systems. The planetary motion in such systems depends strongly on
both the parameters of the stellar system (stellar separation and eccentricity)
and the architecture of the planetary system (number of planets and their
orbital behaviour). In case a terrestrial planet moves in the so-called
habitable zone (HZ) of its host star, the habitability of this planet depends
on many parameters. A crucial factor is certainly the amount of water. We
investigate in this work the transport of water from beyond the snow-line to
the HZ in a binary star system and compare it to a single star system
Statistical and numerical study of asteroid orbital uncertainty
Context. The knowledge of the orbit or the ephemeris uncertainty of asteroid presents a particular interest for various purposes. These quantities are for instance useful for recovering asteroids, for identifying lost asteroids or for planning stellar occultation campaigns. They are also needed to estimate the close approach of Near-Earth asteroids, and subsequent risk of collision. Ephemeris accuracy can also be used for instrument calibration purposes or for scientific applications. Aims. Asteroid databases provide information about the uncertainty of the orbits allowing the measure of the quality of an orbit. The aims of this paper is to analyse these different uncertainty parameters and to estimate the impact of the different measurements on the uncertainty of orbits. Methods. We particularly deal with two main databases ASTORB and MPCORB providing uncertainty parameters for asteroid orbits. Statistical methods are used in order to estimate orbital uncertainty and compare with parameters from databases. Simulations are also generated to deal with specific measurements such as future Gaia or present radar measurements. Results. Relations between the uncertainty parameter and the characteristics of the asteroid (orbital arc, absolute magnitude,...) are highlighted. Moreover, a review of the different measuments are compiled and the impact of these measures on the accuracy of the orbit is also estimated. Key words. Minor planets, asteroids: general – Ephemerides – Astrometry 1
Asteroid flux towards circumprimary habitable zones in binary star systems: I. Statistical Overview
So far, multiple stellar systems harbor more than 130 extra solar planets.
Dynamical simulations show that the outcome of planetary formation process can
lead to various planetary architecture (i.e. location, size, mass and water
content) when the star system is single or double. In the late phase of
planetary formation, when embryo-sized objects dominate the inner region of the
system, asteroids are also present and can provide additional material for
objects inside the habitable zone (hereafter HZ). In this study, we make a
comparison of several binary star systems and their efficiency to move icy
asteroids from beyond the snow-line into orbits crossing the HZ. We modeled a
belt of 10000 asteroids (remnants from the late phase of planetary formation
process) beyond the snow-line. The planetesimals are placed randomly around the
primary star and move under the gravitational influence of the two stars and a
gas giant. As the planetesimals do not interact with each other, we divided the
belt into 100 subrings which were separately integrated. In this statistical
study, several double star configurations with a G-type star as primary are
investigated. Our results show that small bodies also participate in bearing a
non-negligible amount of water to the HZ. The proximity of a companion moving
on an eccentric orbit increases the flux of asteroids to the HZ, which could
result into a more efficient water transport on a short timescale, causing a
heavy bombardment. In contrast to asteroids moving under the gravitational
perturbations of one G-type star and a gas giant, we show that the presence of
a companion star can not only favor a faster depletion of our disk of
planetesimals but can also bring 4 -- 5 times more water into the whole HZ.Comment: Accepted for publication in A&
Constraining multiple systems with GAIA
GAIA will provide observations of some multiple asteroid and dwarf systems.
These observations are a way to determine and improve the quantification of
dynamical parameters, such as the masses and the gravity fields, in these
multiple systems. Here we investigate this problem in the cases of Pluto's and
Eugenia's system. We simulate observations reproducing an approximate planning
of the GAIA observations for both systems, as well as the New Horizons
observations of Pluto. We have developed a numerical model reproducing the
specific behavior of multiple asteroid system around the Sun and fit it to the
simulated observations using least-square method, giving the uncertainties on
the fitted parameters. We found that GAIA will improve significantly the
precision of Pluto's and Charon's mass, as well as Petit Prince's orbital
elements and Eugenia's polar oblateness.Comment: 5 pages, accepted by Planetary and Space Science, Gaia GREAT-SSO-Pis
The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis
Astrometric observations performed by the Gaia Follow-Up Network for Solar
System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects
first detected by ESA's Gaia mission remain recoverable after their discovery.
An observation campaign on the potentially hazardous asteroid (99 942) Apophis
was conducted during the asteroid's latest period of visibility, from
12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall
performance of the Gaia-FUN-SSO . The 2732 high quality astrometric
observations acquired during the Gaia-FUN-SSO campaign were reduced with the
Platform for Reduction of Astronomical Images Automatically (PRAIA), using the
USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric
reduction process and the precision of the newly obtained measurements are
discussed. We compare the residuals of astrometric observations that we
obtained using this reduction process to data sets that were individually
reduced by observers and accepted by the Minor Planet Center. We obtained 2103
previously unpublished astrometric positions and provide these to the
scientific community. Using these data we show that our reduction of this
astrometric campaign with a reliable stellar catalog substantially improves the
quality of the astrometric results. We present evidence that the new data will
help to reduce the orbit uncertainty of Apophis during its close approach in
2029. We show that uncertainties due to geolocations of observing stations, as
well as rounding of astrometric data can introduce an unnecessary degradation
in the quality of the resulting astrometric positions. Finally, we discuss the
impact of our campaign reduction on the recovery process of newly discovered
asteroids.Comment: Accepted for publication in A&
Understanding the nervous system: Lessons from Frontiers in Neurophotonics
The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada
Fast spectrally encoded Mueller optical scanning microscopy
Mueller microscopes enable imaging of the optical anisotropic properties of biological or non-biological samples, in phase and amplitude, at sub-micrometre scale. However, the development of Mueller microscopes poses an instrumental challenge: the production of polarimetric parameters must be sufficiently quick to ensure fast imaging, so that the evolution of these parameters can be visualised in real-time, allowing the operator to adjust the microscope while constantly monitoring them. In this report, a full Mueller scanning microscope based on spectral encoding of polarization is presented. The spectrum, collected every 10 μs for each position of the optical beam on the specimen, incorporates all the information needed to produce the full Mueller matrix, which allows simultaneous display of all the polarimetric parameters, at the unequalled rate of 1.5 Hz (for an image of 256 × 256 pixels). The design of the optical blocks allows for the real-time display of linear birefringent images which serve as guidance for the operator. In addition, the instrument has the capability to easily switch its functionality from a Mueller to a Second Harmonic Generation (SHG) microscope, providing a pixel-to-pixel matching of the images produced by the two modalities. The device performance is illustrated by imaging various unstained biological specimens
The astrometric Gaia-FUN-SSO observation campaign of 99942 Apophis
© 2015 ESO. Aims. Astrometric observations performed by the Gaia Follow-Up Network for Solar System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects first detected by ESA's Gaia mission remain recoverable after their discovery. An observation campaign on the potentially hazardous asteroid (99 942) Apophis was conducted during the asteroid's latest period of visibility, from 12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall performance of the Gaia-FUN-SSO. Methods. The 2732 high quality astrometric observations acquired during the Gaia-FUN-SSO campaign were reduced with the Platform for Reduction of Astronomical Images Automatically (PRAIA), using the USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric reduction process and the precision of the newly obtained measurements are discussed. We compare the residuals of astrometric observations that we obtained using this reduction process to data sets that were individually reduced by observers and accepted by the Minor Planet Center. Results. We obtained 2103 previously unpublished astrometric positions and provide these to the scientific community. Using these data we show that our reduction of this astrometric campaign with a reliable stellar catalog substantially improves the quality of the astrometric results. We present evidence that the new data will help to reduce the orbit uncertainty of Apophis during its close approach in 2029. We show that uncertainties due to geolocations of observing stations, as well as rounding of astrometric data can introduce an unnecessary degradation in the quality of the resulting astrometric positions. Finally, we discuss the impact of our campaign reduction on the recovery process of newly discovered asteroids