125 research outputs found

    How neuronal migration contributes to the morphogenesis of the CNS: insights from the zebrafish

    Get PDF
    We used transgenic zebrafish expressing GFP or YFP in subpopulations of neurons to study the migration, homing process and axon extension of groups of CNS neurons in different regions of the zebrafish brain. We found that extensive migration takes place at all levels of the CNS and gives rise to nuclei or cell populations with specific identities. Here, we describe 4 previously unknown or only partially characterized migratory events taking place in the zebrafish telencephalon and rhombic lip, using 3 different transgenic lines, and identify the phenotypes of the cells undertaking these migrations. The migration of a subgroup of mitral cell precursors from the dorsocaudal telencephalon to the olfactory bulb, visualized in the tg(tbr1:YFP) transgenic line, is coupled with morphogenetic transformation of the dorsal telencephalon. The tg(1.4dlx5a-6a:GFP) transgenic line provides a means to analyze the migration of GABAergic interneurons from the ventral to the dorsal telencephalon, thus extending the occurrence of this migration to another vertebrate. The tg(Xeom:GFP) transgenic line provides the first demonstration of the dorsoventral migration of glutamatergic septal neurons, present in mammals and now described in fish, thus reconciling the contrasting evidence of dorsal patterning genes (tbr1, eomes) expressed in a ventral cell population. Furthermore, migration studies in the tg(1.4dlx5a-6a:GFP) and tg(Xeom:GFP) lines help determine the origin of 2 important cell populations in the fish cerebellum: projection neurons and Purkinje cells. These examples reinforce the concept that migratory events contribute to the distribution of cell types with diverse identities through the CNS and that zebrafish transgenic lines represent excellent tools to study these events. Copyrigh

    Antispila oinophylla new species (Lepidoptera, Heliozelidae), a new North American grapevine leafminer invading Italian vineyards: taxonomy, DNA barcodes and life cycle

    Get PDF
    A grapevine leafminer Antispila oinophylla van Nieukerken & Wagner, sp. n., is described both from eastern North America (type locality: Georgia) and as a new important invader in North Italian vineyards (Trentino and Veneto Region) since 2006. The species is closely related to, and previously confused with A. ampelopsifoliella Chambers, 1874, a species feeding on Virginia creeper Parthenocissus quinquefolia (L.) Planchon., and both are placed in an informal A. ampelopsifoliella group. Wing pattern, genitalia, and DNA barcode data all confirm the conspecificity of native North American populations and Italian populations. COI barcodes differ by only 0–1.23%, indicating that the Italian populations are recently established from eastern North America. The new species feeds on various wild Vitis species in North America, on cultivated Vitis vinifera L. in Italy, and also on Parthenocissus quinquefolia in Italy. North American Antispila feeding on Parthenocissus include at least two other species, one of which is A. ampelopsifoliella. Morphology and biology of the new species are contrasted with those of North American Antispila Hübner, 1825 species and European Holocacista rivillei (Stainton, 1855). The source population of the introduction is unknown, but cases with larvae or pupae, attached to imported plants, are a likely possibility. DNA barcodes of the three European grapevine leafminers and those of all examined Heliozelidae are highly diagnostic. North American Vitaceae-feeding Antispila form two species complexes and include several as yet unnamed taxa. The identity of three out of the four previously described North American Vitaceae-feeding species cannot be unequivocally determined without further revision, but these are held to be different from A. oinophylla. In Italy the biology of A. oinophylla was studied in a vineyard in the Trento Province (Trentino-Alto Adige Region) in 2008 and 2009. Mature larvae overwinter inside their cases, fixed to vine trunks or training stakes. The first generation flies in June. An additional generation occurs from mid-August onwards. The impact of the pest in this vineyard was significant with more than 90% of leaves infested in midsummer. Since the initial discovery in 2006, the pest spread to several additional Italian provinces, in 2010 the incidence of infestation was locally high in commercial vineyards. Preliminary phylogenetic analyses suggest that Antispila is paraphyletic, and that the Antispila ampelopsifoliella group is related to Coptodisca Walsingham, 1895, Holocacista Walsingham & Durrant, 1909 and Antispilina Hering, 1941, all of which possess reduced wing venation. Vitaceae may be the ancestral hostplant family for modern Heliozelidae

    GU-CA-COVID: a clinical audit among Italian genitourinary oncologists during the first COVID-19 outbreak

    Get PDF
    Background: Considering the growing genitourinary (GU) cancer population undergoing systemic treatment with immune checkpoint inhibitors (ICIs) in the context of the COVID-19 pandemic, we planned a clinical audit in 24 Italian institutions treating GU malignancies. Objective: The primary objective was investigating the clinical impact of COVID-19 in GU cancer patients undergoing ICI-based therapy during the first outbreak of SARS-CoV-2 contagion in Italy. Design, setting, and participants: The included centers were 24 Oncology Departments. Two online forms were completed by the responsible Oncology Consultants, respectively, for metastatic renal cell carcinoma (mRCC) and metastatic urothelial carcinoma (mUC) patients receiving at least one administration of ICIs between 31 January 2020 and 30 June 2020. Results and limitation: In total, 287 mRCC patients and 130 mUC patients were included. The COVID-19 incidence was, respectively, 3.5%, with mortality 1%, in mRCC patients and 7.7%, with mortality 3.1%, in mUC patients. In both groups, 40% of patients developing COVID-19 permanently discontinued anticancer treatment. The pre-test SARS-CoV-2 probability in the subgroup of patients who underwent nasal/pharyngeal swab ranged from 14% in mRCC to 26% in mUC. The main limitation of the work was its nature of audit: data were not recorded at the single-patient level. Conclusion: GU cancer patients undergoing active treatment with ICIs have meaningful risk factors for developing severe events from COVID-19 and permanent discontinuation of therapy after the infection. Treatment delays due to organizational issues during the pandemic were unlikely to affect the treatment outcome in this population

    Stable Vascular Connections and Remodeling Require Full Expression of VE-Cadherin in Zebrafish Embryos

    Get PDF
    BACKGROUND: VE-cadherin is an endothelial specific, transmembrane protein, that clusters at adherens junctions where it promotes homotypic cell-cell adhesion. VE-cadherin null mutation in the mouse results in early fetal lethality due to altered vascular development. However, the mechanism of action of VE-cadherin is complex and, in the mouse embryo, it is difficult to define the specific steps of vascular development in which this protein is involved. METHODOLOGY AND PRINCIPAL FINDINGS: In order to study the role VE-cadherin in the development of the vascular system in a more suitable model, we knocked down the expression of the coding gene in zebrafish. The novel findings reported here are: 1) partial reduction of VE-cadherin expression using low doses of morpholinos causes vascular fragility, head hemorrhages and increase in permeability; this has not been described before and suggests that the total amount of the protein expressed is an important determinant of vascular stability; 2) concentrations of morpholinos which abrogate VE-cadherin expression prevent vessels to establish successful reciprocal contacts and, as a consequence, vascular sprouting activity is not inhibited. This likely explains the observed vascular hyper-sprouting and the presence of several small, collapsing vessels; 3) the common cardinal vein lacks a correct connection with the endocardium leaving the heart separated from the rest of the circulatory system. The lack of closure of the circulatory loop has never been described before and may explain some downstream defects of the phenotype such as the lack of a correct vascular remodeling. CONCLUSIONS AND SIGNIFICANCE: Our observations identify several steps of vascular development in which VE-cadherin plays an essential role. While it does not appear to regulate vascular patterning it is implicated in vascular connection and inhibition of sprouting activity. These processes require stable cell-cell junctions which are defective in absence of VE-cadherin. Notably, also partial modifications in VE-cadherin expression prevent the formation of a stable vasculature. This suggests that partial internalization or change of function of this protein may strongly affect vascular stability and organization

    Identification of Pax6-Dependent Gene Regulatory Networks in the Mouse Lens

    Get PDF
    Lineage-specific DNA-binding transcription factors regulate development by activating and repressing particular set of genes required for the acquisition of a specific cell type. Pax6 is a paired domain and homeodomain-containing transcription factor essential for development of central nervous, olfactory and visual systems, as well as endocrine pancreas. Haploinsufficiency of Pax6 results in perturbed lens development and homeostasis. Loss-of-function of Pax6 is incompatible with lens lineage formation and results in abnormal telencephalic development. Using DNA microarrays, we have identified 559 genes expressed differentially between 1-day old mouse Pax6 heterozygous and wild type lenses. Of these, 178 (31.8%) were similarly increased and decreased in Pax6 homozygous embryonic telencephalon [Holm PC, Mader MT, Haubst N, Wizenmann A, Sigvardsson M, Götz M (2007) Loss- and gain-of-function analyses reveals targets of Pax6 in the developing mouse telencephalon. Mol Cell Neurosci 34: 99–119]. In contrast, 381 (68.2%) genes were differently regulated between the lens and embryonic telencephalon. Differential expression of nine genes implicated in lens development and homeostasis: Cspg2, Igfbp5, Mab21l2, Nrf2f, Olfm3, Spag5, Spock1, Spon1 and Tgfb2, was confirmed by quantitative RT-PCR, with five of these genes: Cspg2, Mab21l2, Olfm3, Spag5 and Tgfb2, identified as candidate direct Pax6 target genes by quantitative chromatin immunoprecipitation (qChIP). In Mab21l2 and Tgfb2 promoter regions, twelve putative individual Pax6-binding sites were tested by electrophoretic mobility shift assays (EMSAs) with recombinant Pax6 proteins. This led to the identification of two and three sites in the respective Mab21l2 and Tgfb2 promoter regions identified by qChIPs. Collectively, the present studies represent an integrative genome-wide approach to identify downstream networks controlled by Pax6 that control mouse lens and forebrain development
    corecore