369 research outputs found

    Plant exudates improve the mechanical conditions for root penetration through compacted soils

    Get PDF
    ACKNOWLEDGEMENTS Funding for this project was provided by Tertiary Education Trust Funds (TETFund) and Ambrose Alli University. We wish to thank Annette Raffan for technical support. M. Naveed is funded by the Biotechnology and Biological Sciences Research Council (BBSRC) project ‘Rhizosphere by Design’ (BB/L026058/1). Open access via Springer Compact AgreementPeer reviewedPublisher PD

    Interactive effects of low molecular weight carbon compounds on N2O emissions

    Get PDF
    Low molecular weight carbon (C) compounds in hotspots such as the rhizosphere can greatly affect nitrate reduction processes. Towards a better prediction of N2O emission from denitrification, we are still lacking understanding of responses to the supply of complex C compound mixtures such as rhizodeposits versus the often examined response to individually amended C compounds. In a laboratory study, we applied three C compounds, glucose, citric acid and glutamic acid, individually or as a three-compound mixture to 14NH415NO3 amended soil at 80% water-filled pore space. For the individual C compound treatments, the substrateswere enriched in 13C-C. The mixture was enriched in 13C-C either in all constituent compounds or in one of the compounds only, resulting in four different treatments. This set-up enabled quantification of the utilization of each compound for heterotrophic respiration when applied individually and in combination, and for this to be related to the dynamics of 15N-NO3- reduction to 15N-N2O. The total 15N-N2O emission from the compound mixture over 10 days was similar to the total emission predicted from the average of the individual compound treatments This could suggest potential predictability of denitrification responses to complex mixtures of C based on knowledge of its constituents. However, immediate and simultaneous peaks of 15N-N2O and 13C-CO2 fluxes from the compound mixture contrasted with observed delays in 15N-N2O and 13C-CO2 fluxes when the compounds had been applied individually. Moreover, relative contributions of the C compounds to 13C-CO2 respiration from the compound mixture were different from the predicted contributions based on their individual application. While contributions of glutamic acid-C and citric acid-C to respiration in mixture during peak 15N-N2O emission were increased, glucose utilization in the mixture treatment was significantly lower. These findings give a glimpse of the challenges we are facing when trying to predict nitrate reduction occurring in the rhizosphere where interactions between C compounds and the soil matrix, as well as within the wider heterotrophic community, determine process rates. Given that most of our understanding of the role of C in regulating nitrate reduction, is informed from single compound studies, we require more evidence on the effects and innate interactions of compound mixtures to be able to predict responses to C sources

    Closing maize yield gaps in sub-Saharan Africa will boost soil N2_{2}O emissions

    Get PDF
    In sub-Saharan Africa (SSA), the most important staple crop is maize; the production of which is dominated by smallholder farming systems using low external inputs (<10 kg N ha−1^{−1}) resulting in low crop yields and large yield gaps (difference between actual and potential yields). To assess increases in soil N2_{2}O emissions when closing maize yield gaps by increased fertilizer use, we reviewed the literature, developed a relationship between yield gaps and soil N2_{2}O emissions, and used it to scale across SSA. According to our analysis, N2_{2}O emissions from maize production will increase from currently 255 to 1755 ± 226 Gg N2_{2}O-N year−1^{−1} (+589%) if existing maize yield gaps are closed by 75%, increasing total anthropogenic N2_{2}O emissions for SSA by c. 50%

    Instruments to assess the perception of physicians in the decision-making process of specific clinical encounters: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The measurement of processes and outcomes that reflect the complexity of the decision-making process within specific clinical encounters is an important area of research to pursue. A systematic review was conducted to identify instruments that assess the perception physicians have of the decision-making process within specific clinical encounters.</p> <p>Methods</p> <p>For every year available up until April 2007, PubMed, PsycINFO, Current Contents, Dissertation Abstracts and Sociological Abstracts were searched for original studies in English or French. Reference lists from retrieved studies were also consulted. Studies were included if they reported a self-administered instrument evaluating physicians' perceptions of the decision-making process within specific clinical encounters, contained sufficient description to permit critical appraisal and presented quantitative results based on administering the instrument. Two individuals independently assessed the eligibility of the instruments and abstracted information on their conceptual underpinnings, main evaluation domain, development, format, reliability, validity and responsiveness. They also assessed the quality of the studies that reported on the development of the instruments with a modified version of STARD.</p> <p>Results</p> <p>Out of 3431 records identified and screened for evaluation, 26 potentially relevant instruments were assessed; 11 met the inclusion criteria. Five instruments were published before 1995. Among those published after 1995, five offered a corresponding patient version. Overall, the main evaluation domains were: satisfaction with the clinical encounter (n = 2), mutual understanding between health professional and patient (n = 2), mental workload (n = 1), frustration with the clinical encounter (n = 1), nurse-physician collaboration (n = 1), perceptions of communication competence (n = 2), degree of comfort with a decision (n = 1) and information on medication (n = 1). For most instruments (n = 10), some reliability and validity criteria were reported in French or English. Overall, the mean number of items on the modified version of STARD was 12.4 (range: 2 to 18).</p> <p>Conclusion</p> <p>This systematic review provides a critical appraisal and repository of instruments that assess the perception physicians have of the decision-making process within specific clinical encounters. More research is needed to pursue the validation of the existing instruments and the development of patient versions. This will help researchers capture the complexity of the decision-making process within specific clinical encounters.</p

    Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses?

    Get PDF
    Cropping systems comprising winter catch crops followed by spring wheat could reduce N leaching risks compared to traditional winter wheat systems in humid climates. We studied the soil mineral N (Ninorg) and root growth of winter- and spring wheat to 2.5 m depth during three years. Root depth of winter wheat (2.2 m) was twice that of spring wheat, and this was related to much lower amounts of Ninorg in the 1 to 2.5 m layer after winter wheat (81 kg Ninorg ha-1 less). When growing winter catch crops before spring wheat, N content in the 1 to 2.5 m layer after spring wheat was not different from that after winter wheat. The results suggest that by virtue of its deep rooting, winter wheat may not lead to high levels of leaching as it is often assumed in humid climates. Deep soil and root measurements (below 1 m) in this experiment were essential to answer the questions we posed
    • 

    corecore