02. - 07.09.2017, Göttingen

Tagungsnummer

P62

Thema

Kommission III: Bodenbiologie und Bodenökologie Biotische und abiotische Steuerung von Bodengasflüssen

Autoren

M. Kuntz^{1,2}, N. J. Morley², P. D. Hallett², C. Wattson³, E. M. Baggs² ¹Universtiät Hohenheim, Biogeophysik, Stuttgart; ²University of Aberdeen, Aberdeen; ³Scotland's Rural college, Crop and Soil Sciences, Aberdeen, UK

Titel

Interactive effects of low molecular weight carbon compounds on N2O emissions

Abstract

Low molecular weight carbon (C) compounds in hotspots such as the rhizosphere can greatly affect nitrate reduction processes. Towards a better prediction of N₂O emission from denitrification, we are still lacking understanding of responses to the supply of complex C compound mixtures such as rhizodeposits versus the often examined response to individually amended C compounds. In a laboratory study, we applied three C compounds, glucose, citric acid and glutamic acid, individually or as a three-compound mixture to ¹⁴NH₄ ¹⁵NO₃ amended soil at 80% water-filled pore space. For the individual C compound treatments, the substrateswere enriched in ¹³C-C. The mixture was enriched in ¹³C-C either in all constituent compounds or in one of the compounds only, resulting in four different treatments. This set-up enabled quantification of the utilization of each compound for heterotrophic respiration when applied individually and in combination, and for this to be related to the dynamics of ¹⁵N-NO₃ - reduction to ¹⁵N-N₂O. The total ¹⁵N-N₂O emission from the compound mixture over 10 days was similar to the total emission predicted from the average of the individual compound treatments. However, immediate and simultaneous peaks of ¹⁵N-N₂O and ¹³C-CO₂fluxes from the compound mixture contrasted with observed delays in ¹⁵N-N₂O and ¹³C-CO₂ fluxes when the compound mixture were different from the predicted contributions based on their individual publication. While contributions of glutamic acid-C and citric acid-C to respiration in mixture during peak ¹⁵N-N₂O.