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Abstract

The development of soil sustainability is linked to the improved management of soil biota,
such as earthworms, and crop residues to improve soil physical structure, enhance microbial
activities, and increase nutrient cycling. This study examined the impacts of maize residue
(65.8 C/N ratio, dry biomass 0.75 kg m?) incorporation and earthworms (70 g Metaphire
guillelmi m2) on the resistance and resilience of soil C and N cycling to experimentally
applied stresses. Field treatments were maize residue incorporation, maize residue
incorporation with earthworm addition, and an unamended control. Resistance and resilience
of C mineralization, ammonia oxidation, and potential denitrification were investigated over
28 days following a persistent stress of Cu (1 mg Cu soil g!) or a transient heat stress (50 °C
for 16 hours). The results indicated that C mineralization was more resistant and resilient than

ammonia oxidation and denitrification to either a persistent Cu or a transient heat stress. The
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application of maize residues significantly increased soil microbial biomass, C mineralization,
ammonia oxidation and potential denitrification compared with the unamended control. Maize
residues significantly improved the resistance and resilience of N processes to Cu and heat
stress. The presence of earthworms significantly increased potential denitrification but had
limited positive effect on functional resistance and resilience. This study suggested crop
residue incorporation would strongly increase soil functional resistance and resilience to
persistent and transient stresses, and thus could be a useful agricultural practice to improve
soil ecosystem sustainability.

Keywords: crop residue, soil fauna, C mineralization, ammonia oxidation, denitrification

1. Introduction

Increasing soil degradation has raised awareness of soil sustainability of which a central
component is the capability to withstand (resistance) and recover (resilience) from
environmental stresses (Griffiths and Philippot, 2013). So much so that a global resilience
programme in response to land use pressures has been suggested (Smith et al., 2016). Soil
microorganisms play a central role in conferring resistance and resilience, through their
central role within the soil food web and sensitivity to agricultural practices (de Vries and
Shade, 2013). Crop residue amendment would increase soil organic matter (SOM), the
decomposition of which provides nutrients and energy to support the growth and succession
of soil biota (Shade et al., 2012). Increased SOM also leads to improved soil physical
properties (Diacono and Montemurro, 2010), and accelerated carbon (C) and nitrogen (N)
cycling (Turmel et al., 2015). Thus, SOM may be an important resource to strengthen the
resistance and resilience of soil ecosystem (Lal, 2015).

Improving the management of soil biota, such as earthworms, in agroecosystem is an integral
part of sustainable management (Fonte and Six, 2010) especially as biotic interactions of the

soil food web are a critical determinant of soil function, including resistance and resilience (de
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Vries and Wallenstein, 2017). Of the three ecological groups of earthworms: anecics build a
relatively permanent vertical burrow system and feed on organic matter collected from the
soil surface, epigeics live and feed within the soil matrix creating horizontal burrows, and
endogeics inhabit the surface layers of soil consuming fresh organic matter (Brussaard et al.,
2012). To varying extents earthworms mix organic matter into the soil, influence soil
aggregation and porosity (Fonte and Six, 2010), gas diffusion and soil water retention, and
soil microbial community structure (Bernard et al., 2012). The availability and composition of
substrate provided by crop residues affects earthworm diet, behaviour and growth (Brussaard
et al., 2012; Zheng et al., 2018). Experiments have shown that the interaction between
earthworms and plant residues affects soil functions. Thus, earthworms regulated the ratio of
C- to N- degrading enzyme activities during crop residue decomposition in a laboratory
experiment (Zheng et al., 2018). Aspects of the interaction between added crop residues and
earthworms have also been explored in a long-term field trial of a wheat-rice cropping system
in sub-tropical China (Tao et al., 2009). Results showed that the presence of earthworms
further enhanced protease and alkaline phosphatase activities in soil with incorporated maize
residue (Tao et al., 2009). A comparison of bacterial community structure in the same field
trial (Gong et al., 2018), showed that residue incorporation had significant effects on bacterial
community structure and that earthworms increased the ratio of Proteobacteria to
Acidobacteria (indicative of high nutrient turnover). Earthworms also increased the
connection between taxa, which is taken as an indicator of compositional resilience (Dunne et
al., 2002). The interaction between plant cover and earthworms on soil resistance and
resilience was explored in a short-term greenhouse experiment, which revealed that plants
rather than earthworms increased resistance and resilience to soil compaction (Griffiths et al.,

2008).
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To further explore such interactions, we used samples from a long-term field experiment to
determine whether amendments with maize residues and earthworms affected the functional
resistance and resilience of soil. We quantified changes in C mineralization, ammonia
oxidation and potential denitrification rates immediately after heat- (short-term transient) and
Cu- (long-term persistent) induced stress and during subsequent recovery over 28 days after
Griffiths et al. (2001). Because of the identified effects of earthworms and maize residues to
alter microbial community composition and increase C and N cycling in the field experiment
(Gong et al., 2018), we hypothesised that soil amended with maize residues and earthworms
would have greater resistance and resilience than soil amended with maize residues alone.

2. Materials and methods

2.1 Study site and soil samples

A field trial at the experimental station of Nanjing Agricultural University (China, 118°47'E,
and 32°03'N) was established in 2001. In each plot, there were three treatments as described
by Tao et al. (2009): maize residues (Zea mays L.) incorporated into soil, maize residues
incorporated into soil with earthworm (Metaphire guillelmi) addition, and a control with no
additions. Each treatment had three replicate plots, arranged in a completely randomized
experimental design. Earthworms were monitored after every harvesting stage annually and
were added if necessary to maintain a density of 70 g earthworm m-. This earthworm is the
dominant species in this area, commonly found in disturbed arable soil and its behaviour
shows it to be endogeic (Gong et al., 2018). Maize residues (0.75 kg m2 air-dry weight,
chopped < 2 cm) containing 7.96 g N kg!, 2.85 g P kg'!, 10.67 g K kg'!, and 65.8 C/N ratio
were applied to the appropriate plots at the beginning at rice and wheat growth period every
year.

The soil, classified as an Orthic Acrisol, was sampled in May 2016. From each plot, three

surface soil samples (0-20 cm depth) approximately 10 kg in weight were randomly sampled
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and mixed thoroughly. The soil had a pH (H,0) of 8.25 and contained 5.86 g C kg! and 0.71
g N kg! soil (Shu, 2018). Soil microbial biomass carbon (MBC) was analysed by chloroform
fumigation (Vance et al., 1987). Mineral N (NO3- and NH,*) was extracted by shaking with 2
M KCI for 1 hour and analysed using a continuous flow analyser (Skalar San++ 4800,
Netherlands). Dissolved organic carbon (DOC) was extracted following the method of Ghani
et al. (2003) and analysed using a TOC analyser (Dohrmann DC-80, UK).

2.2 Resistance and resilience assay

Soils from all the treatments were packed to a bulk density of 1.1 g cm= and incubated for 7
days with a water content of 60% water-filled pore space (WFPS) at 20 °C prior to analysis.
The stresses imposed followed Griffiths et al. (2001) and were: Cu (1 mg Cu soil g') to
provide a persistent stress; and heat (50 °C for 16 hours) to provide a transient stress. For the
heat stressed soil, a preliminary test (Supplementary material 1) indicated that the temperature
of 40 °C that has been typically applied in studies on temperate soils (Griffiths et al., 2001)
was not a sufficient stress for these subtropical soils because of their great adaptation to a
relatively high temperature (Table S1), as also found by Zhang et al. (2010). For each soil,
aliquots were exposed to either a stress (heat or Cu) or were unstressed as a control, with six
replicates for each field treatment and laboratory applied stress. Each aliquot contained 220 g
dry-weight equivalent of soil (bulk density 1.1 g cm™) in a 500 ml capacity polypropylene pot.
Six replicate aliquots of each stressed- soil were prepared by adding 2.2 ml of 1.57 M
CuS045H,0 to obtain a concentration of 1 mg Cu soil g''; or 2.2 ml of sterile distilled water
to both the heat-stressed and unstressed (control) soils. All the aliquots were then sealed with
parafilm to exchange air but prevent any water loss. The heat- stressed soils were then
incubated at 50 °C for 16 hours, while both Cu-stressed and unstressed soil were incubated at
20 °C for 16 hours. All aliquots were then incubated at 20 °C for the remainder of the

resilience assay.
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To facilitate temporal description, day 0 was defined as the time when Cu or heat was applied.
Subsamples were taken for the analysis of microbial functions at intervals of 1, 3, 7, 14 and
28 days after the stresses were imposed. C mineralization was measured by the emission of
CO; after 24 hours following the addition of 120 pl of organic C compounds which provides
50 mg C ml! and 9.72 mg N ml-!' to a 2 g of soil (Shu, 2018). Ammonia oxidation was
determined by the chlorate inhibition method (Groffman 1985). Potential denitrification was
determined following anaerobic incubation of 20 g soil in the presence of 10% (v/v) acetylene
(Shu, 2018).

2.3 Data analysis

A linear mixed effect model was fit in the “lme4” package for the “R” statistical programme
(version 3.5.2) using the “Imer” function (Bates et al., 2019). Effects of fixed term and
random term on C mineralization, ammonia oxidation and potential denitrification were
analysed. Fixed terms were field treatment, stress, time, and their interaction (treatment X
stress x time). The replicate plot was considered a random term.

Stability f(#) was calculated as the change in biological functions of the stressed soil ()

compared with the unstressed control (o) at day ¢ (Equation 1) (Zhang et al., 2010):

£(6) =i—tx 100 W
t

Resistance was defined as the stability measured at day 1 after perturbation (Equation 2),
while resilience was estimated as the integrative stability after day 1 up to 28 days following

stress (Equation 3) (Shu, 2018).

2

1
Resistance = — x 100
a1

2 3)
Resilience = | f(t)dt/(28 -1)
1

3. Results and discussion
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Maize residue incorporation significantly increased the concentrations of dissolved organic C
and microbial biomass C (Table 1). The linear mixed effect model demonstrated that maize
residue incorporation significantly (P < 0.001) increased C mineralization, ammonia
oxidation and denitrification (Table S3). These results are consistent with previous studies
that maize residue addition increased microbial biomass C (Tao et al., 2009) and promoted C
sequestration (Shu et al., 2015). An increased supply of nutrients, such as from the maize
residues, can hasten microbial growth (Henderson et al., 2010), sustain microorganisms and
enhance microbial activities (Shade et al., 2012).

When soil was stressed by either Cu or heat, C mineralization in all the treatments was more
resistant and resilient than ammonia oxidation and potential denitrification (Table 2). This is
consistent with several studies which demonstrated that N processes are more susceptible to
external stresses than C processes (Bissett et al., 2013; Morillas et al., 2015). This may be
because the microbial community carrying out C mineralization is more diverse and more
functionally redundant than specialized microbial populations performing ammonia oxidation
and denitrification (Philippot et al., 2013). Denitrification was particularly susceptible to the
applied stresses, with resistance and resilience often less than 20% (Table 2), as also
previously was shown for both Cu (Magalhaes et al., 2007) and heat (Wertz et al., 2007).

We found that maize residue incorporation significantly (P < 0.05) increased the resistance
and resilience of ammonia oxidation and potential denitrification to Cu (Table 2). This could
be attributed to the enhanced microbial biomass (Table 1), as well as the buffering effects by
adsorption or chelation of Cu?" by organic matter which diminishes the bioavailability and
toxicity of Cu to microorganisms (Degryse et al., 2009). The bioavailability of Cu in soil with
incorporated crop residue was likely to be significantly less than in the unamended soil one
day after Cu addition (Navel et al., 2010). Crop residues serve as an energy and nutrient

source for microorganisms to accelerate microbial community succession and so increase
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microbial biomass (Brandt et al., 2010). Access to a favourable resource is important for the
degree of recovery and the time that microorganisms take to recover (Placella et al., 2012).
That organic amendments improved soil functional resistance and resilience to Cu has been
reported previously for C mineralization in temperate soils (Gregory et al., 2009). In contrast,
we observed that crop residue incorporation in this soil decreased resistance and resilience of
C mineralization to Cu (Table 2). We saw that C mineralization in soil with incorporated crop
residue decreased significantly after 3 days incubation in both the unstressed and the Cu
stressed soil (Table S2). This could be related to the depletion of available nutrients. The
different impacts of residue on the resistance and resilience of C and N processes could also
be ascribed to the different stress-sensitivity and distinct microbial characteristics between C
and N processes.

All the measured microbial functions were resilient to heat, especially ammonia oxidation and
potential denitrification in the soil with incorporated maize residue (Table 2). Heat leads to
the death of heat-sensitive microorganisms, such as proteobacteria which had a low resistance
to heat stress (Frenk et al., 2017). In recovering from a transient heat stress, the attributes of
the microbial communities, mixtrophy and intrinsic growth rate, determine microbial use of
available C to reproduce and recolonize niches rapidly (Shade et al., 2012). Necromass, such
as dead microbial cells induced by the heat stress, also provides a rapidly mineralised
substrate that is easily accessible to free-living microorganisms (Drigo et al., 2012). A
previous study has demonstrated that bacterial communities could recover to its original
structure from a transient heat stress, but not from a persistent Cu stress (Shu, 2018). Routine
successional trajectories of microbial communities may be altered differently by different
stresses (de Vries and Shade, 2013), and gradual shifts of microbial community may be the

result of long-term adaptations to the persistent Cu stress.
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In the soils with incorporated maize residues, earthworms significantly increased potential
denitrification (Table S3). Earthworms gut, casts and drilospheres are hotspots of
denitrification, and thus contribute to high emission of N,O (Lubbers et al., 2013). However,
earthworm presence had few significant additional impacts on C mineralization and ammonia
oxidation (Table S3). The different response between soil functions to earthworms unveils
that their underlying microorganisms may be influenced by earthworms differently. For
example, in a northern temperate forest in USA, earthworms enhanced cellulolytic enzyme
activity and shifted soil microbial composition away from fungi and towards bacteria
(Dempsey et al., 2013). Previous studies, at the site where soils were collected for this
experiment, demonstrated that earthworms significantly changed the composition and
connectance of the microbial community (Gong et al., 2018) and soil enzyme activities (Tao
et al., 2009) when maize residues were incorporated. The lack of significant earthworm effect
on resistance and resilience in this experiment, suggests that these changes were not enough to
affect the stability of the soil. The effects of earthworms may also be overwhelmed by
residues, further study should include a treatment of earthworms alone without residue
amendment. The small effect of earthworms could result if not all the measured soils had
transited through the earthworm gut, because microorganisms and their activities can be
stimulated by earthworm mucus (Bernard et al., 2012). This study only focused on the bulk
soil, however, Gong and colleagues (unpublished data) have found a significant effect of
earthworms on the microbial community associated with soil aggregates. Therefore, it would
be interesting to explore how soil resistance and resilience changes at an aggregate scale.

In conclusion, C and N processes responded differently to imposed stresses, so it is important
that assays of resilience explore multiple functions and potential disturbances. Soil functions
are less likely to recover from a persistent stress (e.g. Cu) than a transient stress (e.g. heat),

but transient stresses can still result in a prolonged degradation to soil functions. Stresses
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associated with climate change, such as the frequency of long hot periods, drought or flooding
could affect soil for a period after the stresses are removed. The important role of earthworms
in ecosystems is widely recognised, however, in this example of a disturbed agricultural soil
crop residue addition as a management option was more important than having earthworms
present for restoring soil resistance and resilience. Although further research is required
across a wider range of soils and with more types of residues, our findings suggest that
applying crop residues to a degraded agricultural soil is a primary driver in the recovery of
functions like C and N cycling that underpin productivity and sustainability.
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SUPPLEMENTARY MATERIALS

Resilience of soil functions to transient and persistent stresses is improved more by residue
incorporation than the activity of earthworms

Xin Shu'23*, Paul D. Hallett?, Mangiang Liu®, Elizabeth M. Baggs®, Feng Hu* Bryan S.
Griffiths?

Supplementary material 1: Preliminary Experiment

Soils from the treatments of control and maize residue incorporated and earthworm added were
packed to a bulk density of 1.1 g cm?, and incubated for 7 days with a water content of 60%
water-filled pore space (WFPS) at 20 °C prior to the preliminary test. For each soil, aliquots
were exposed to either a stress (heat at 40 °C or 50 °C) or were unstressed as a control, with
three replicates for each treatment and stress. Each aliquot contained 220 g dry-weight
equivalent of soil in a 500 ml capacity pot. Three replicate aliquots of each stressed- soil were
prepared by adding 2.2 ml of sterile distilled water to both the heat-stressed and unstressed
control soils. All aliquots were then sealed with parafilm to exchange air but prevent any water
loss. The heat- stressed soils were then incubated at either 40 or 50 °C for 16 hours, while the
unstressed soils were incubated in a moist atmosphere at 20 °C for 16 hours. All aliquots were
then incubated at 20 °C for the remainder of the same resilience assay. C mineralization,
ammonia oxidation and potential denitrification were measured over 7 days following stress.
The methods of C mineralization, ammonia oxidation and potential denitrification are described

1n main text.
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