1,439 research outputs found

    A New Type of Intensity Correlation in Random Media

    Full text link
    A monochromatic point source, embedded in a three-dimensional disordered medium, is considered. The resulting intensity pattern exhibits a new type of long-range correlations. The range of these correlations is infinite and their magnitude, normalized to the average intensity, is of order 1/k0â„“1/k_0 \ell, where k0k_0 and â„“\ell are the wave number and the mean free path respectively.Comment: RevTeX, 8 pages, 3 figures, Accepted to Phys. Rev. Let

    SLIMS—a user-friendly sample operations and inventory management system for genotyping labs

    Get PDF
    Summary: We present the Sample-based Laboratory Information Management System (SLIMS), a powerful and user-friendly open source web application that provides all members of a laboratory with an interface to view, edit and create sample information. SLIMS aims to simplify common laboratory tasks with tools such as a user-friendly shopping cart for subjects, samples and containers that easily generates reports, shareable lists and plate designs for genotyping. Further key features include customizable data views, database change-logging and dynamically filled pre-formatted reports. Along with being feature-rich, SLIMS' power comes from being able to handle longitudinal data from multiple time-points and biological sources. This type of data is increasingly common from studies searching for susceptibility genes for common complex diseases that collect thousands of samples generating millions of genotypes and overwhelming amounts of data. LIMSs provide an efficient way to deal with this data while increasing accessibility and reducing laboratory errors; however, professional LIMS are often too costly to be practical. SLIMS gives labs a feasible alternative that is easily accessible, user-centrically designed and feature-rich. To facilitate system customization, and utilization for other groups, manuals have been written for users and developers

    Including pupils with special educational needs and/or disabilities in mainstream secondary physical education: A revisit study

    Get PDF
    Our research used an innovative methodological approach by revisiting an original study conducted 15 years previously (Morley et al., 2005). A purposive sample of 31 secondary school teachers in the UK were interviewed to explore their perceptions of including pupils with special educational needs and/or disabilities (SEND) in mainstream secondary physical education (PE). All interviews were transcribed verbatim and texts analysed thematically. Findings suggest that, despite significant policy developments, little has changed in teachers’ perceptions of their ability to include pupils with SEND in PE and there remain significant challenges to them achieving this. Some exceptions were documented, most notably an increased and positively received focus on inclusion within PE initial teacher education. The article concludes with recommendations for future practice, particularly in terms of teacher education and professional development, as well as the need for effective dissemination of research findings to key stakeholders

    Solid-state NMR study of the YadA membrane-anchor domain in the bacterial outer membrane.

    Get PDF
    MAS-NMR was used to study the structure and dynamics at ambient temperatures of the membrane-anchor domain of YadA (YadA-M) in a pellet of the outer membrane of E. coli in which it was expressed. YadA is an adhesin from the pathogen Yersinia enterocolitica that is involved in interactions with the host cell, and it is a model protein for studying the autotransport process. Existing assignments were sucessfully transferred to a large part of the YadA-M protein in the E. coli lipid environment by using 13C-13C DARR and PDSD spectra at different mixing times. The chemical shifts in most regions of YadA-M are unchanged relative to those in microcrystalline YadA-M preparations from which a structure has previously been solved, including the ASSA region that is proposed to be involved in transition-state hairpin formation for transport of the soluble domain. Comparisons of the dynamics between the microcrystalline and membrane-embedded samples indicate greater flexibility of the ASSA region in the outer-membrane preparation at physiological temperatures. This study will pave the way towards MAS-NMR structure determination of membrane proteins, and a better understanding of functionally important dynamic residues in native membrane environments

    Anomalous Conductance Distribution in Quasi-One Dimension: Possible Violation of One-Parameter Scaling Hypothesis

    Full text link
    We report measurements of conductance distribution in a set of quasi-one-dimensional gold wires. The distribution includes the second cumulant or the variance which describes the universal conductance fluctuations, and the third cumulant which denotes the leading deviation. We have observed an asymmetric contribution--or, a nonvanishing third cumulant--contrary to the expectation for quasi-one-dimensional systems in the noninteracting theories in the one-parameter scaling framework, which include the perturbative diagrammatic calculations and the random matrix theory.Comment: 5 PAGE

    Random Walks for Spike-Timing Dependent Plasticity

    Full text link
    Random walk methods are used to calculate the moments of negative image equilibrium distributions in synaptic weight dynamics governed by spike-timing dependent plasticity (STDP). The neural architecture of the model is based on the electrosensory lateral line lobe (ELL) of mormyrid electric fish, which forms a negative image of the reafferent signal from the fish's own electric discharge to optimize detection of sensory electric fields. Of particular behavioral importance to the fish is the variance of the equilibrium postsynaptic potential in the presence of noise, which is determined by the variance of the equilibrium weight distribution. Recurrence relations are derived for the moments of the equilibrium weight distribution, for arbitrary postsynaptic potential functions and arbitrary learning rules. For the case of homogeneous network parameters, explicit closed form solutions are developed for the covariances of the synaptic weight and postsynaptic potential distributions.Comment: 18 pages, 8 figures, 15 subfigures; uses revtex4, subfigure, amsmat

    Light transport in cold atoms: the fate of coherent backscattering in the weak localization regime

    Full text link
    The recent observation of coherent backscattering (CBS) of light by atoms has emphasized the key role of the velocity spread and of the quantum internal structure of the atoms. Firstly, using highly resonant scatterers imposes very low temperatures of the disordered medium in order to keep the full contrast of the CBS interference. This criterion is usually achieved with standard laser cooling techniques. Secondly, a non trivial internal atomic structure leads to a dramatic decrease of the CBS contrast. Experiments with Rubidium atoms (with a non trivial internal structure) and with Strontium (with the simplest possible internal structure) show this behaviour and confirm theoretical calculations

    Photon Localization in Resonant Media

    Full text link
    We report measurements of microwave transmission over the first five Mie resonances of alumina spheres randomly positioned in a waveguide. Though precipitous drops in transmission and sharp peaks in the photon transit time are found near all resonances, measurements of transmission fluctuations show that localization occurs only in a narrow frequency window above the first resonance. There the drop in the photon density of states is found to be more pronounced than the fall in the photon transit time, leading to a minimum in the Thouless number.Comment: To appear in PRL; 5 pages, including 5 figure

    Weak localization of light by cold atoms: the impact of quantum internal structure

    Get PDF
    Since the work of Anderson on localization, interference effects for the propagation of a wave in the presence of disorder have been extensively studied, as exemplified in coherent backscattering (CBS) of light. In the multiple scattering of light by a disordered sample of thermal atoms, interference effects are usually washed out by the fast atomic motion. This is no longer true for cold atoms where CBS has recently been observed. However, the internal structure of the atoms strongly influences the interference properties. In this paper, we consider light scattering by an atomic dipole transition with arbitrary degeneracy and study its impact on coherent backscattering. We show that the interference contrast is strongly reduced. Assuming a uniform statistical distribution over internal degrees of freedom, we compute analytically the single and double scattering contributions to the intensity in the weak localization regime. The so-called ladder and crossed diagrams are generalized to the case of atoms and permit to calculate enhancement factors and backscattering intensity profiles for polarized light and any closed atomic dipole transition.Comment: 22 pages Revtex, 9 figures, to appear in PR
    • …
    corecore