28 research outputs found

    Magnitude and Complexity of Rectal Mucosa HIV-1-Specific CD8+ T-Cell Responses during Chronic Infection Reflect Clinical Status

    Get PDF
    The intestinal mucosa displays robust virus replication and pronounced CD4+ T-cell loss during acute human immunodeficiency virus type 1 (HIV-1) infection. The ability of HIV-specific CD8+ T-cells to modulate disease course has prompted intensive study, yet the significance of virus-specific CD8+ T-cells in mucosal sites remains unclear.We evaluated five distinct effector functions of HIVgag-specific CD8+ T-cells in rectal mucosa and blood, individually and in combination, in relationship to clinical status and antiretroviral therapy (ART). In subjects not on ART, the percentage of rectal Gag-specific CD8+ T-cells capable of 3, 4 or 5 simultaneous effector functions was significantly related to blood CD4 count and inversely related to plasma viral load (PVL) (p<0.05). Polyfunctional rectal CD8+ T-cells expressed higher levels of MIP-1beta and CD107a on a per cell basis than mono- or bifunctional cells. The production of TNFalpha, IFN-gamma, and CD107a by Gag-specific rectal CD8+ T-cells each correlated inversely (p<0.05) with PVL, and MIP-1beta expression revealed a similar trend. CD107a and IFN-gamma production were positively related to blood CD4 count (p<0.05), with MIP-1beta showing a similar trend. IL-2 production by rectal CD8+ T-cells was highly variable and generally low, and showed no relationship to viral load or blood CD4 count.The polyfunctionality of rectal Gag-specific CD8+ T-cells appears to be related to blood CD4 count and inversely related to PVL. The extent to which these associations reflect causality remains to be determined; nevertheless, our data suggest a potentially important role for mucosal T-cells in limiting virus replication during chronic infection

    Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag

    Get PDF
    HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes

    The Molecular Bacterial Load Assay Replaces Solid Culture for Measuring Early Bactericidal Response to Antituberculosis Treatment

    No full text
    We evaluated the use of the molecular bacterial load (MBL) assay, for measuring viable Mycobacterium tuberculosis in sputum, in comparison with solid agar and liquid culture. The MBL assay provides early information on the rate of decline in bacterial load and has technical advantages over culture in either form

    Modification of the porous network by salt crystallization in experimentally weathered sedimentary stones

    Get PDF
    The aim of this study is to understand how the porous network of a stone is modified by the crystallization of sodium sulphate. Samples of five different stones have been experimentally weathered and evaluated thanks to mercury porosimetry in three different states: fresh, weathered by salt and weathered cleaned from the salts. Optical and electronic microscopy observations have also been led to complete these measurements. The results show that porosity and the general aspect of the porous network remain quite similar after weathering. Nevertheless, crystals tend to grow on all the grains regardless of the size of the related voids (pores or cracks), and these crystallizations seem to be harmful for the stone: a lot of voids of different entry sizes (from 10 nm to 20 ÎĽm) have been affected by the accelerated ageing tests. This study confirms that generally stones with a high amount of small pores (up to several ÎĽm) are the most susceptible to suffer from salt damage. Nevertheless, the influence of a few other features (high porosity, pore shape and pre-existent intragranular cracks) on the long-term behaviour of the stones suffering from salt decay is discussed

    Differential immunogenicity of HIV-1 clade C proteins in eliciting CD8+ and CD4+ cell responses.

    No full text
    BACKGROUND: The relative immunogenicity of human immunodeficiency virus type 1 (HIV-1) proteins for CD8+ and CD4+ cell responses has not been defined. METHODS: HIV-1-specific T cell responses were evaluated in 65 chronically HIV-1-infected untreated subjects by interferon- gamma flow cytometry with peptides spanning the clade C consensus sequence. RESULTS: The magnitude of HIV-1-specific CD8+ T cell responses correlated significantly with CD4+ cell responses, but the percentage of CD8+ T cells directed against HIV-1 (median, 2.76%) was always greater than that of CD4+ cells (median, 0.24%). Although CD8+ T cell responses were equally distributed among Gag, Pol, and the regulatory and accessory proteins, Gag was the dominant target for CD4+ cell responses. There was no consistent relationship between virus-specific CD8+ or CD4+ cell response and viral load. However, the median viral load in subjects in whom Gag was the dominant CD8+ T cell target was significantly lower than that in subjects in whom non-Gag proteins were the main target (P=.007). CONCLUSIONS: Gag-specific responses dominate the CD4+ T cell response to HIV, whereas CD8+ T cell responses are broadly distributed, which indicates differential immunogenicity of these cells against HIV-1. The preferential targeting of Gag by CD8+ T cells is associated with enhanced control of viral load

    Pyrosequencing Reveals Restricted Patterns of CD8+ T Cell Escape-Associated Compensatory Mutations in Simian Immunodeficiency Virus ▿ ‡

    No full text
    CD8+ T cells play a major role in the containment of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. CD8+ T cell-driven variations in conserved regions under functional constraints result in diminished viral replicative capacity. While compensatory mutations outside an epitope can restore replicative capacity, the kinetics with which they arise remains unknown. Additionally, certain patterns of linked mutations associated with CD8+ T cell epitope escape in these highly conserved regions may lead to variable levels of viral fitness. Here, we used pyrosequencing to investigate the kinetics and patterns of mutations surrounding the Mamu-A1*00101-bound Gag181-189CM9 CD8+ T cell epitope. We obtained more than 400 reads for each sequencing time point, allowing us to confidently detect the emergence of viral variants bearing escape mutations with frequencies as low as 1% of the circulating virus. With this level of detail, we demonstrate that compensatory mutations generally arise concomitantly with Gag181-189CM9 escape mutations. We observed distinct patterns of linked flanking mutations, most of which were found downstream of Gag181-189CM9. Our data indicate that, whereas Gag181-189CM9 escape is much more complex that previously appreciated, it occurs in a coordinated fashion, with very specific patterns of flanking mutations required for immune evasion. This is the first detailed report of the ontogeny of compensatory mutations that allow CD8+ T cell epitope escape in infected individuals

    Targeting of a CD8 T cell env epitope presented by HLA-B*5802 is associated with markers of HIV disease progression and lack of selection pressure.

    No full text
    In HIV-infected persons, certain HLA class I alleles are associated with effective control of viremia, while others are associated with rapid disease progression. Among the most divergent clinical outcomes are the relatively good prognosis in HLA-B*5801 expressing persons and poor prognosis with HLA-B*5802. These two alleles differ by only three amino acids in regions involved in HLA-peptide recognition. This study evaluated a cohort of over 1000 persons with chronic HIV clade C virus infection to determine whether clinical outcome differences associated with B*5801 (n = 93) and B*5802 ( n = 259) expression are associated with differences in HIV-1-specific CD8 (+) T cell responses. The overall breadth and magnitude of HIV-1-specific CD8(+) T cell responses were lower in persons expressing B*5802, and epitope presentation by B*5802 contributed significantly less to the overall response as compared to B*5801-restricted CD8 (+) T cells. Moreover, viral load in B*5802-positive persons was higher and CD4 cell counts lower when this allele contributed to the overall CD8 (+) T cell response, which was detected exclusively through a single epitope in Env. In addition, persons heterozygous for B*5802 compared to persons homozygous for other HLA-B alleles had significantly higher viral loads. Viral sequencing revealed strong selection pressure mediated through B*5801-restricted responses but not through B*5802. These data indicate that minor differences in HLA sequence can have a major impact on epitope recognition, and that selective targeting of Env through HLA-B*5802 is at least ineffectual if not actively adverse in the containment of viremia. These results provide experimental evidence that not all epitope-specific responses contribute to immune containment, a better understanding of which is essential to shed light on mechanisms involved in HIV disease progression
    corecore