938 research outputs found
Plasma resonance radiation
Qualitative determination of charged particle cloud motion through corona and excitation of electron plasma oscillations through analysis of test particle electromagnetic field in plasm
Quantum Loop Modules and Quantum Spin Chains
We construct level-0 modules of the quantum affine algebra \Uq, as the
-deformed version of the Lie algebra loop module construction. We give
necessary and sufficient conditions for the modules to be irreducible. We
construct the crystal base for some of these modules and find significant
differences from the case of highest weight modules. We also consider the role
of loop modules in the recent scheme for diagonalising certain quantum spin
chains using their \Uq symmetry.Comment: 32 pages, 5 figures (appended), ENSLAPP-L-419/93, MRR2/9
Representation Theory of Twisted Group Double
This text collects useful results concerning the quasi-Hopf algebra \D . We
give a review of issues related to its use in conformal theories and physical
mathematics. Existence of such algebras based on 3-cocycles with values in which mimic for finite groups Chern-Simons terms of gauge theories,
open wide perspectives in the so called "classification program". The
modularisation theorem proved for quasi-Hopf algebras by two authors some years
ago makes the computation of topological invariants possible. An updated,
although partial, bibliography of recent developments is provided.Comment: 15 pages, no figur
On Dijkgraaf-Witten Type Invariants
We explicitly construct a series of lattice models based upon the gauge group
which have the property of subdivision invariance, when the coupling
parameter is quantized and the field configurations are restricted to satisfy a
type of mod- flatness condition. The simplest model of this type yields the
Dijkgraaf-Witten invariant of a -manifold and is based upon a single link,
or -simplex, field. Depending upon the manifold's dimension, other models
may have more than one species of field variable, and these may be based on
higher dimensional simplices.Comment: 18 page
Localization and Diagonalization: A review of functional integral techniques for low-dimensional gauge theories and topological field theories
We review localization techniques for functional integrals which have
recently been used to perform calculations in and gain insight into the
structure of certain topological field theories and low-dimensional gauge
theories. These are the functional integral counterparts of the Mathai-Quillen
formalism, the Duistermaat-Heckman theorem, and the Weyl integral formula
respectively. In each case, we first introduce the necessary mathematical
background (Euler classes of vector bundles, equivariant cohomology, topology
of Lie groups), and describe the finite dimensional integration formulae. We
then discuss some applications to path integrals and give an overview of the
relevant literature. The applications we deal with include supersymmetric
quantum mechanics, cohomological field theories, phase space path integrals,
and two-dimensional Yang-Mills theory.Comment: 72 pages (60 A4 pages), LaTeX (to appear in the Journal of
Mathematical Physics Special Issue on Functional Integration (May 1995)
Casimir Invariants from Quasi-Hopf (Super)algebras
We show how to construct, starting from a quasi-Hopf (super)algebra, central
elements or Casimir invariants. We show that these central elements are
invariant under quasi-Hopf twistings. As a consequence, the elliptic quantum
(super)groups, which arise from twisting the normal quantum (super)groups, have
the same Casimir invariants as the corresponding quantum (super)groups.Comment: 24 pages, Latex fil
Defect free global minima in Thomson's problem of charges on a sphere
Given unit points charges on the surface of a unit conducting sphere,
what configuration of charges minimizes the Coulombic energy ? Due to an exponential rise in good local minima, finding global
minima for this problem, or even approaches to do so has proven extremely
difficult. For \hbox{} recent theoretical work based on
elasticity theory, and subsequent numerical work has shown, that for --1000 adding dislocation defects to a symmetric icosadeltahedral lattice
lowers the energy. Here we show that in fact this approach holds for all ,
and we give a complete or near complete catalogue of defect free global minima.Comment: Revisions in Tables and Reference
The Drinfel'd Double and Twisting in Stringy Orbifold Theory
This paper exposes the fundamental role that the Drinfel'd double \dkg of
the group ring of a finite group and its twists \dbkg, \beta \in
Z^3(G,\uk) as defined by Dijkgraaf--Pasquier--Roche play in stringy orbifold
theories and their twistings.
The results pertain to three different aspects of the theory. First, we show
that --Frobenius algebras arising in global orbifold cohomology or K-theory
are most naturally defined as elements in the braided category of
\dkg--modules. Secondly, we obtain a geometric realization of the Drinfel'd
double as the global orbifold --theory of global quotient given by the
inertia variety of a point with a action on the one hand and more
stunningly a geometric realization of its representation ring in the braided
category sense as the full --theory of the stack . Finally, we show
how one can use the co-cycles above to twist a) the global orbifold
--theory of the inertia of a global quotient and more importantly b) the
stacky --theory of a global quotient . This corresponds to twistings
with a special type of 2--gerbe.Comment: 35 pages, no figure
Dual-Frequency VSOP Observations of AO 0235+164
AO 0235+164 is a very compact, flat spectrum radio source identified as a BL
Lac object at a redshift of z=0.94. It is one of the most violently variable
extragalactic objects at both optical and radio wavelengths. The radio
structure of the source revealed by various ground-based VLBI observations is
dominated by a nearly unresolved compact component at almost all available
frequencies.
Dual-frequency space VLBI observations of AO 0235+164 were made with the VSOP
mission in January-February 1999. The array of the Japanese HALCA satellite and
co-observing ground radio telescopes in Australia, Japan, China and South
Africa allowed us to study AO 0235+164 with an unprecedented angular resolution
at frequencies of 1.6 and 5 GHz. We report on the sub-milliarcsecond structural
properties of the source. The 5-GHz observations led to an estimate of T_B >
5.8 x 10^{13} K for the rest-frame brightness temperature of the core, which is
the highest value measured with VSOP to date.Comment: 8 pages, 8 figures, to appear in Publ. Astron. Soc. Japa
A Compact Extreme Scattering Event Cloud Towards AO 0235+164
We present observations of a rare, rapid, high amplitude Extreme Scattering
Event toward the compact BL-Lac AO 0235+164 at 6.65 GHz. The ESE cloud is
compact; we estimate its diameter between 0.09 and 0.9 AU, and is at a distance
of less than 3.6 kpc. Limits on the angular extent of the ESE cloud imply a
minimum cloud electron density of ~ 4 x 10^3 cm^-3. Based on the amplitude and
timescale of the ESE observed here, we suggest that at least one of the
transients reported by Bower et al. (2007) may be attributed to ESEs.Comment: 11 pages, 2 figure
- …