8,368 research outputs found
Exactly solvable interacting vertex models
We introduce and solvev a special family of integrable interacting vertex
models that generalizes the well known six-vertex model. In addition to the
usual nearest-neighbor interactions among the vertices, there exist extra
hard-core interactions among pair of vertices at larger distances.The
associated row-to-row transfer matrices are diagonalized by using the recently
introduced matrix product {\it ansatz}. Similarly as the relation of the
six-vertex model with the XXZ quantum chain, the row-to-row transfer matrices
of these new models are also the generating functions of an infinite set of
commuting conserved charges. Among these charges we identify the integrable
generalization of the XXZ chain that contains hard-core exclusion interactions
among the spins. These quantum chains already appeared in the literature. The
present paper explains their integrability.Comment: 20 pages, 3 figure
Exact Solution of the Asymmetric Exclusion Model with Particles of Arbitrary Size
A generalization of the simple exclusion asymmetric model is introduced. In
this model an arbitrary mixture of molecules with distinct sizes , in units of lattice space, diffuses asymmetrically on the lattice.
A related surface growth model is also presented. Variations of the
distribution of molecules's sizes may change the excluded volume almost
continuously. We solve the model exactly through the Bethe ansatz and the
dynamical critical exponent is calculated from the finite-size corrections
of the mass gap of the related quantum chain. Our results show that for an
arbitrary distribution of molecules the dynamical critical behavior is on the
Kardar-Parizi-Zhang (KPZ) universality.Comment: 28 pages, 2 figures. To appear in Phys. Rev. E (1999
Finite Chains with Quantum Affine Symmetries
We consider an extension of the (t-U) Hubbard model taking into account new
interactions between the numbers of up and down electrons. We confine ourselves
to a one-dimensional open chain with L sites (4^L states) and derive the
effective Hamiltonian in the strong repulsion (large U) regime. This
Hamiltonian acts on 3^L states. We show that the spectrum of the latter
Hamiltonian (not the degeneracies) coincides with the spectrum of the
anisotropic Heisenberg chain (XXZ model) in the presence of a Z field (2^L
states). The wave functions of the 3^L-state system are obtained explicitly
from those of the 2^L-state system, and the degeneracies can be understood in
terms of irreducible representations of U_q(\hat{sl(2)}).Comment: 31pp, Latex, CERN-TH.6935/93. To app. in Int. Jour. Mod. Phys. A.
(The title of the paper is changed. This is the ONLY change. Previous title
was: Hubbard-Like Models in the Infinite Repulsion Limit and
Finite-Dimensional Representations of the Affine Algebra U_q(\hat{sl(2)}).
Critical Behaviour of Mixed Heisenberg Chains
The critical behaviour of anisotropic Heisenberg models with two kinds of
antiferromagnetically exchange-coupled centers are studied numerically by using
finite-size calculations and conformal invariance. These models exhibit the
interesting property of ferrimagnetism instead of antiferromagnetism. Most of
our results are centered in the mixed Heisenberg chain where we have at even
(odd) sites a spin-S (S') SU(2) operator interacting with a XXZ like
interaction (anisotropy ). Our results indicate universal properties
for all these chains. The whole phase, , where the models change
from ferromagnetic to ferrimagnetic behaviour is
critical. Along this phase the critical fluctuations are ruled by a c=1
conformal field theory of Gaussian type. The conformal dimensions and critical
exponents, along this phase, are calculated by studying these models with
several boundary conditions.Comment: 21 pages, standard LaTex, to appear in J.Phys.A:Math.Ge
Recurrent points of continuous functions on connected linearly ordered spaces
Let L be a connected linearly ordered topological space and let f
be a continuous function from L into itself. if P (f) and R(f) denote
the set of periodic points and the set of recurrent points of f respectively,
we show that the center of f is and the depth of the
center is at most 2. Furthermore we have
The phase diagram of the anisotropic Spin-1 Heisenberg Chain
We applied the Density Matrix Renormalization Group to the XXZ spin-1 quantum
chain. In studing this model we aim to clarify controversials about the point
where the massive Haldane phase appears.Comment: 2 pages (standart LaTex), 1 figure (PostScript) uuencode
New Integrable Models from Fusion
Integrable multistate or multiflavor/color models were recently introduced.
They are generalizations of models corresponding to the defining
representations of the U_q(sl(m)) quantum algebras. Here I show that a similar
generalization is possible for all higher dimensional representations. The
R-matrices and the Hamiltonians of these models are constructed by fusion. The
sl(2) case is treated in some detail and the spin-0 and spin-1 matrices are
obtained in explicit forms. This provides in particular a generalization of the
Fateev-Zamolodchikov Hamiltonian.Comment: 11 pages, Latex. v2: statement concerning symmetries qualified, 3
minor misprints corrected. J. Phys. A (1999) in pres
Spin chains and combinatorics: twisted boundary conditions
The finite XXZ Heisenberg spin chain with twisted boundary conditions was
considered. For the case of even number of sites , anisotropy parameter -1/2
and twisting angle the Hamiltonian of the system possesses an
eigenvalue . The explicit form of the corresponding eigenvector was
found for . Conjecturing that this vector is the ground state of the
system we made and verified several conjectures related to the norm of the
ground state vector, its component with maximal absolute value and some
correlation functions, which have combinatorial nature. In particular, the
squared norm of the ground state vector is probably coincides with the number
of half-turn symmetric alternating sign matrices.Comment: LaTeX file, 7 page
From conformal invariance to quasistationary states
In a conformal invariant one-dimensional stochastic model, a certain
non-local perturbation takes the system to a new massless phase of a special
kind. The ground-state of the system is an adsorptive state. Part of the
finite-size scaling spectrum of the evolution Hamiltonian stays unchanged but
some levels go exponentially to zero for large lattice sizes becoming
degenerate with the ground-state. As a consequence one observes the appearance
of quasistationary states which have a relaxation time which grows
exponentially with the size of the system. Several initial conditions have
singled out a quasistationary state which has in the finite-size scaling limit
the same properties as the stationary state of the conformal invariant model.Comment: 20 pages, 15 figure
Derivation of a Matrix Product Representation for the Asymmetric Exclusion Process from Algebraic Bethe Ansatz
We derive, using the algebraic Bethe Ansatz, a generalized Matrix Product
Ansatz for the asymmetric exclusion process (ASEP) on a one-dimensional
periodic lattice. In this Matrix Product Ansatz, the components of the
eigenvectors of the ASEP Markov matrix can be expressed as traces of products
of non-commuting operators. We derive the relations between the operators
involved and show that they generate a quadratic algebra. Our construction
provides explicit finite dimensional representations for the generators of this
algebra.Comment: 16 page
- …