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Abstract. In a conformal invariant one-dimensional stochastic model, a certain
nonlocal perturbation takes the system to a new massless phase of a special kind.
The ground-state of the system is an adsorptive state. Part of the finite-size
scaling spectrum of the evolution Hamiltonian stays unchanged but some levels
go exponentially to zero for large lattice sizes, becoming degenerate with the
ground-state. As a consequence one observes the appearance of quasistationary
states which have a relaxation time which grows exponentially with the size of
the system. Several initial conditions have singled out a quasistationary state
which has in the finite-size scaling limit the same properties as the stationary
state of the conformal invariant model.
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1. Introduction

We have recently [1] presented the peak adjusted raise and peel model (PARPM). This
is a one-parameter (denoted by p) extension of the well studied, raise and peel (RPM)
one-dimensional growth model [2, 3]. The latter model is recovered if one takes p = 1. The
PARPM is defined in the configuration space of Dyck (restricted solid-on-solid, RSOS)
paths on a lattice with L + 1 sites (L even). The RSOS configurations can be seen as an
interface separating a fluid of tiles covering a substrate and a rarefied gas of tiles hitting
the interface. If h(i) (i = 0, 1, . . . , L) is the height at the site i of an RSOS path, for the
substrate one has h(2k) = 0, h(2k + 1) = 1. The interface is composed of clusters which
touch each other. Depending on the position of the hit, the tile can be locally adsorbed
(increasing the size of a cluster or fusing two clusters) or can trigger a nonlocal desorption,
peeling part of a layer of tiles from the surface of a cluster. With a p-dependent probability,
a tile hits a peak (local maximum) and is reflected. The other sites are hit with equal
probabilities. The effective rates for adsorption and desorption become dependent on the
total number of peaks of the configuration, on the size L of the system, and on p.

If the parameter p = 1, the rates are all equal to 1 and independent of the number
of peaks and the size L of the system. The situation is very different if p �= 1. The
dependence of the rates on the global properties of the configuration can be seen as a
process with long-range interactions. The larger the value of the parameter p (p > 1), the
stronger the ‘long-range’ effect is. Configurations with many peaks become more stable.
The slowing down of configurations with many peaks will lead us to new physics.

It was shown in [1] that for 0 ≤ p ≤ pmax, where pmax = 2(L− 1)/L, in the finite-size
scaling limit, the properties of the system are p independent. The system is conformal
invariant (this is the merit of the model) and the stationary states have many well
understood properties. The p dependence of the model appears only in the non-universal
sound velocity vs(p) which fixes the time scale. The spectra of the Hamiltonians describing
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the time evolution of the system are given by a known representation of the Virasoro
algebra [4]. Moreover it was observed that if p = pmax the stationary state becomes
an absorbing state, i.e. with probability 1 one finds only one configuration. This is a
new phase. The absorbing state corresponds to the configuration given by the substrate
(maximum number of peaks). Conformal invariance should be lost. It turns out that the
picture is much more complex, and the PARPM at p = pmax has fascinating properties.
One observes quasistationary states (QSSs), and conformal invariance is broken in an
uncanny way. One should keep in mind that one is dealing with a nonlocal model. For
p > pmax some rates become negative and the stochastic process is ill defined.

The present paper deals only with the new phase of the PARPM and is a natural
continuation of our previous work [1]. The presentation of the model in section 2 in this
paper is a mere repetition of section 2 of [1].

Since except for p = 1 the PARPM is not integrable, we have studied its properties
using Monte Carlo simulations on large systems (up to L = 70 000). For the study of
the spectrum of the evolution Hamiltonian we have done numerical diagonalizations of
lattices up to L = 18 sites and up to L = 30 for one special case.

In section 3, using Monte Carlo simulations we study the time evolution of the system.
We show that, surprisingly, for moderate system sizes and various initial conditions, after
a short transient time the system stays practically unchanged for a long relaxation time
in a QSS.

QSSs are observed in systems with long-range or mean-field interactions in statistical
mechanics and Hamiltonian dynamics. There is a long list of papers on this subject and
we refer the reader to some reviews [5, 6]. For the effects of noise on the existence of
QSS, see [7]. Typically the time the system spends in a QSS increases with the length of
the system following a power law. Exponentially divergent transient times were observed
in cellular automata and in coupled map lattices [8, 9]. We are aware of only one other
stochastic model defined on a lattice (the ABC model [10]) in which QSSs are seen. In this
model in the stationary state translational invariance is broken. The sites are occupied
in alphabetical order by three blocks of A, B or C particles. In the QSSs there are more
blocks. As we are going to see, our model is very different.

In order to understand the origin of QSSs, in section 4 we perform a finite-size scaling
study of the spectra of the Hamiltonian which gives the time evolution of the system. In
the unperturbed (p < pmax) case, the finite-size scaling spectrum is given by the conformal
dimensions Δ. They are equal to all non-negative integer numbers except 1 (there is no
current). The degeneracies are also known [4].

It turns out that in the new phase all the properly scaled energy levels stay
unchanged, except for one level for each even conformal dimension (this includes the
energy–momentum tensor which plays a crucial role in conformal invariance and has
Δ = 2!). We are thus left with

Δ = 0, 3, 4, . . . , (1.1)

with a degeneracy smaller by one unit for all even values of Δ starting with Δ = 4. This
is not a rigorously proven result but a conjecture based on numerics up to Δ = 7.

If we increase the lattice size of the system, all the levels which are no longer in the
conformal invariant towers go exponentially to zero. This makes the value Δ = 0 infinitely
degenerate in the infinite volume limit. One should keep in mind that the configuration
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Figure 1. An example of a Dyck path for L = 14. There are four contact points
and three clusters. The substrate profile is shown in blue.

corresponding to the substrate, which is an absorbing state, has also Δ = 0. For finite
volumes, the missing levels are the origin of the QSS.

In section 5, in order to make the connection between eigenfunctions and the
probability distribution functions (PDF) seen in QSSs, we mention some properties of
intensity matrices (the Hamiltonian is one of them) when one of the states is an absorbing
state.

We next derive some properties of the QSS related to the eigenfunction of the energy
level originally at Δ = 2 for p < pmax, and which decreases exponentially to the value
Δ = 0 at p = pmax. This correspondence is possible due to a unique property of the
eigenfunction of the first excited level of an intensity matrix in the presence of an absorbing
state.

Using Monte Carlo simulations and initial conditions in which the probability of
having the substrate is taken as zero, in section 6 we have studied the density of contact
points and the average height in the finite-size scaling limit. If the system is conformal
invariant, both these quantities are given by precise analytic expressions. It turns out
that in the QSS state, with very high accuracy, the same expressions describe the data.
This result is more than surprising. As we have discussed, in the new phase the finite-size
scaling spectrum of the Hamiltonian (which gives the time-like correlation functions) is
not the same as in the conformal invariant region and one would expect the space-like
correlation functions to change too.

The open questions and our conclusions are presented in section 7.

2. Description of the peak adjusted raise and peel model

We consider an open one-dimensional system with L + 1 sites (L even). A Dyck path is
a special RSOS configuration defined as follows. We attach to each site i non-negative
integer heights hi which obey RSOS rules:

hi+1 − hi = ±1, h0 = hL = 0 (i = 0, 1, . . . , L − 1). (2.1)

There are

Z(L) = L!/(L/2)!(L/2 + 1)! (2.2)

configurations of this kind. If hj = 0 at site j one has a contact point. Between two
consecutive contact points one has a cluster. There are four contact points and three
clusters in figure 1.

doi:10.1088/1742-5468/2011/09/P09030 4
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Figure 2. Example of a configuration with four peaks of the PARPM for L = 18.
Depending on the position where the tilted tiles reach the interface, several
distinct processes occur (see the text).

A Dyck path is seen as an interface separating a film of tilted tiles deposited on a
substrate from a rarefied gas of tiles (see figure 2). The stochastic processes in discrete
time has two steps:

(a) Sequential updating. With a probability P (i) a tile hits the site i = 1, . . . , L − 1
(
∑

i P (i) = 1). In the RPM, P (i) is chosen uniform: P (i) = P = 1/(L − 1). In the
PARPM, this is no longer the case. For a given configuration c (there are Z(L) of them)
with nc peaks all the peaks are hit with the same probability Rp = p/(L − 1) (p is a
non-negative parameter), all the other L − 1 − nc sites are hit with the same probability
Qc = qc/(L − 1). Since

ncRp + (L − 1 − nc)Qc = 1 (2.3)

qc depends on the configuration c and on the parameter p, and we have that

qc = (L − 1 − pnc)/(L − 1 − nc), c = 1, 2, . . . , Z(L). (2.4)

(b) Effects of a hit by a tile. The consequence of the hit on a configuration is the same as
in the RPM at the conformal invariant point. Depending of the slope si = (hi+1−hi−1)/2
at the site i, the following processes can occur:

(1) si = 0 and hi > hi−1 (tile b in figure 2). The tile hits a peak and is reflected.

(2) si = 0 and hi < hi−1 (tile c in figure 2). The tile hits a local minimum and is adsorbed
(hi → hi + 2).

(3) si = 1 (tile a in figure 2). The tile is reflected after triggering the desorption
(hj → hj −2) of a layer of b−1 tiles from the segment {j = i+1, . . . , i+ b−1} where
hj > hi = hi+b.

(4) si = −1 (tile d in figure 2). The tile is reflected after triggering the desorption
(hj → hj −2) of a layer of b−1 tiles belonging to the segment {j = i−b+1, . . . , i−1}
where hj > hi = hi−b.

The continuous time evolution of a system composed by the states a = 1, 2, . . . , Z(L)
with probabilities Pa(t) is given by a master equation that can be interpreted as an
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imaginary time Schrödinger equation:

d

dt
Pa(t) = −

∑

b

Ha,bPb(t). (2.5)

The Hamiltonian H is an Z(L) × Z(L) intensity matrix: Ha,b (a �= b) is nonpositive and∑
a Ha,b = 0. −Ha,b (a �= b) is the rate for the transition |b〉 → |a〉. The ground-state

wavefunction of the system |0〉, H|0〉 = 0, gives the probabilities in the stationary state:

|0〉 =
∑

a

Pa|a〉, Pa = lim
t→∞

Pa(t). (2.6)

In order to go from the discrete time description of the stochastic model to the
continuous time limit, we take Δt = 1/(L − 1) and

Hac = −racqc (c �= a), (2.7)

where rac are the rates of the RPM and qc is given by equation (2.4). The probabilities
Rp do not enter in (2.5) since in the RPM when a tile hits a peak the tile is reflected
and the configuration stays unchanged. Notice that through the qcs the matrix elements
of the Hamiltonian depend on the size of the system and the numbers of peaks nc of the
configurations.

As can be seen from (2.3) and (2.7), for p < 1 the adsorption and desorption are
faster than at p = 1 and slower for p > 1. The slowing down is extreme for the substrate
where nc = L/2. In this case for the value p = pmax = 2(L− 1)/L we have qc = 0 and the
substrate becomes an absorbing state.

In a previous paper it was shown that the PARPM is conformal invariant in the
domain 0 ≤ p < pmax. The following exact results, which are independent of p, are known
for this domain.

The average height for large values of the size L of the system is equal to [11, 12]

h(L) =
2

π

∫ π/2

π/L

√
3

2π
ln

(
L

π
sin x

)

dx + β ≈ 0.1056 lnL + β ′, (2.8)

where β and β ′ are non-universal numbers.
The density of contact points g(x, L) (x is the distance to the origin), in the finite-size

scaling limit (x � 1, L � 1, but x/L fixed) is given by [13]:

g(x, L) = C

(
L

π
sin(πx/L)

)−1/3

, (2.9)

where

C = −
√

3

6π5/6
Γ(−1/6) = 0.753 149 · · · . (2.10)

The average density of minima and maxima (sites where adsorption does not take place)
τ(L) has the asymptotic value:

lim
L→∞

τ(L) = 3/4, (2.11)

with non-universal corrections (depending on the value of p) of order 1/L. We will use
these results in sections 3 and 6.

doi:10.1088/1742-5468/2011/09/P09030 6
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Figure 3. Special initial conditions for L = 12 (see text).

3. Quasistationary states at pmax

When we understood that at pmax one has an absorbing state, and therefore a phase
transition, we became interested in seeing how conformal invariance is broken. We
expected the system to become massive, as is the usual case when conformal invariance
is broken. It turns out that the new phase is a fascinating object.

We have studied several initial conditions specified by the local heights hi (see
figure 3). One is the ‘pyramid’ (PYR) with heights of 0, 1, 2, 3, . . . , L/2, L/2− 1, . . . , 1, 0.
Another is the ‘one dent’ (OD), the heights being 0, 1, 2, 1, 0, 1, 0, 1, 0, . . . , 1, 0. The ‘two
dents’ (TD) one has heights of 0, 1, 2, 1, 0, 1, 0, . . . , 0, 1, 2, 1, 0. The ‘all dents’ (AD) is
defined by the local heights 0, 1, 2, 1, 0, 1, 2, 1, 0, . . . , 0, 1, 2, 1, 0. We have chosen these four
configurations because they are extreme cases. The PYR configuration has only one peak.
The OD asymmetric configuration has only one peak less than the substrate which has
the maximum number of peaks. The symmetric TD configuration has two peaks less than
substrate, the AD configuration is an intermediate one.

We have looked, in Monte Carlo simulations, at the average height from which we
have subtracted the average height of the substrate (equal to 1/2), as a function of time
taking L = 96, and starting with the PYR and TD initial conditions. The results of our
simulations are shown in figure 4. One sees that for each of the two initial conditions one
obtains time-independent results which are not zero, as one could expect to find in the
absorbing state. This observation suggests the existence of QSSs [5, 6].

We have also looked at the average density of clusters ncl(t)/L from which we have
subtracted 1

2
which is the corresponding quantity for the substrate. The results for the

two initial conditions PYR and TD are shown in figure 5. One obtains similar results to
those shown in figure 4.

doi:10.1088/1742-5468/2011/09/P09030 7
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Figure 4. p = pmax. The average height from which one has subtracted the
average height of the substrate (1

2 ), as a function of time for two initial conditions
PYR and TD. The lattice size L = 96. The averages are obtained taking 6× 105

samples.

Comparison of the average heights and the density of clusters for the two initial
conditions suggests that one has more clusters (therefore lower values of the average
height) for the TD initial condition compared to the PYR initial condition. Therefore for
L = 96 the two QSSs are different.

Let us make an observation. If we assume that in the QSS one has the same density
of clusters as in the stationary distribution observed in the 0 ≤ p < pmax case [2], for
which one has an analytical expression (ncl/L = Γ(1/3)

√
3/2πL1/3), one obtains the value

−0.339 for the quantity shown in figure 5. This value is close to the value seen for the PYR
initial condition. This observation will play in important role in understanding the QSS.

In order to see how the QSS appeared, we looked for another quantity which was
extensively studied in the PARPM [1]. This is the average density of sites where one has
a maximum or a minimum in a given configuration τmax(L, t) for p = pmax. In the PARPM
and 0 ≤ p < pmax, in the large L limit one has τ(L,∞) = τ(L) = 0.75 (for the substrate
τ(L) = 1).

If one starts with the TD configuration and looks at time variation of the quantity
1 − τmax(L, t) for different system sizes one obtains the results shown in figure 6. We can
see that for small values of L = 46–60 one has an exponential fall-off with time. Then
an almost linear decrease in time for the values L = 62–76. For L = 92 and 96 one sees
practically no time variation and a value τmax(L, t) ∼ 0.77 very close to the value 0.75
seen in the stationary state in the conformal invariant domain of the model. This makes

doi:10.1088/1742-5468/2011/09/P09030 8
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Figure 5. The density of clusters −1/2 (the density of clusters in the substrate)
as a function of time. Same conditions as in figure 3.

us suspect the following behavior of τmax(L, t) in the QSS:

1 − τmax(L, t) = A(L) exp(−E(L)t), (3.1)

where E(L) decreases exponentially with L and A(L) increases smoothly with L to the
value of 0.25 observed for the stationary states in the 0 ≤ p < pmax domain. In figure 7,
we show for L = 50 the data undistinguished from a fit:

1 − τmax(50, t) = 0.217 exp(−0.000 0522t). (3.2)

Notice the very small value of E and the fact that A(50) is not far from the value 0.25.
We sum up our observations; although for p = pmax we expected the system to relax

in the absorbing state we observed the existence of states with very long relaxation times.
For the lattice sizes presented above, the QSS depends slightly on the initial conditions.
Surprisingly, the density of clusters and of maxima and minima in the QSS have values
closed to those observed in the stationary states for 0 ≤ p < pmax. Actually for the PYR
initial condition the results coincide. In the next three sections we will explain these
observations.

4. The spectrum and wavefunctions of the Hamiltonian. How a QSS occurs at
pmax

In order to understand the origin of the QSS we have studied the spectrum of the
Hamiltonian which gives the time evolution of the system (see equation (2.5)). For

doi:10.1088/1742-5468/2011/09/P09030 9
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Figure 6. p = pmax. Average density of minima and maxima τmax(L, t) subtracted
from 1, as a function of time for different lattices L. The initial condition OD
was chosen. The averages are obtained by taking 6 × 105 samples.

0 ≤ p < pmax, where we have conformal invariance, we have checked [1] that in the
finite-size scaling limit

lim
L→∞

Ei(L) = πvsΔi/L, i = 0, 1, 2, . . . , (4.1)

where E0 = 0, Δi are the scaling dimensions, and the sound velocity has the expression

vs(p) = (1 − 3(p − 1)/5)3
√

3/2. (4.2)

Notice that the velocity decreases when p > 1 since, as described in section 2, the transition
rates are smaller. The scaling dimensions are given by the partition function [4]:

Z(q) =

∞∑

i=0

qΔi = (1 − q)

∞∏

n=1

(1 − qn)−1. (4.3)

We give the first values of Δis together with the corresponding degeneracies (dis):

Δ = 0(1), 2(1), 3(1), 4(2), 5(2), 6(4), 7(4), . . . . (4.4)

We will check whether these values will also be seen for p = pmax.
In order to estimate the values of the Δis, we have taken L = 18 (this is not a small

lattice!) and diagonalized numerically the Hamiltonian for various values of p. The results
are shown in figure 8 where the first 11 levels are seen (the ground-state energy E0 is equal
to zero). The remaining 10 levels should correspond roughly (see (4.4)) to Δ = 2, 3, 4, 5

doi:10.1088/1742-5468/2011/09/P09030 10
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Figure 7. The average density of minima and maxima τ(L) as a function of time
for L = 50 together with the fit (3.2). The initial configuration is OD and the
averages are obtained by taking 6 × 105 samples.

and 6. We can see that for p = 1, where the model is integrable, this is indeed the case.
The levels cluster in the right places. When p increases, one notices that the properly
scaled E1, after a smooth behavior up to p ≈ 0.9, decreases rapidly for p = pmax (we have
used for vs(pmax) the value given by (4.2) for p = 2). Using Monte Carlo simulations,
we have checked [1] that for p < pmax the small decrease with p of E1 is a finite-size
effect and therefore what one sees in the figure is a crossover effect. One can also see
that for increased values of p, E4 crosses E3 and that E9 crosses all the levels E8, . . . , E5.
Except for the three levels E1, E4 and E9 which decrease dramatically for p = pmax, the
other levels have the same finite-size behavior as those in the conformal invariant domain
(p < pmax). This suggests that the three levels mentioned above might be related to the
QSS. We now proceed to a detailed analysis of these observations.

Using different lattice sizes we have computed E1 as a function of L up to L = 30. For
this calculation we could study larger lattices due to a special property of the Hamiltonian
at p = pmax. As we are going to show in section 5, the eigen level corresponding to E1 is
the ground-state energy of a reduced matrix defined in a basis where the absorbing state
is absent. In this case, by using the power method we were able to calculate E1 up to
L = 30. The results can be seen in figure 9. Using the two points corresponding to the
largest lattice sizes, one obtains:

E1(L) = 0.912 exp(−0.206L). (4.5)

doi:10.1088/1742-5468/2011/09/P09030 11
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Figure 8. Estimates Δ(n)
n = LEn/πvs(p) of the scaling dimensions Δn for different

values of p, and for the lattice size L = 18. The estimates corresponding to the
first 11 energy levels are shown. The values of vs(p) were obtained from (4.2).

To be sure that a power law behavior (E ≈ L−m) is excluded, we have estimated the
derivative −d/d ln(L){ln(E1(L))}. This quantity should reach a constant for large values
of L if E1(L) behaves as a power but should diverge linearly in the case of exponential
behavior like (4.5). As seen from figure 10, the exponential behavior (4.5) is correct.

A similar analysis of E4(L) but up to L = 18 only, gives a similar result:

E4(L) = 2.41 exp(−0.10L). (4.6)

We have not looked at E9(L) but we expect again an exponential fall-off. We conclude that
three energy levels have an exponential fall-off and that they can be related to the QSS.
This will be shown to be the case in section 5. We proceed by looking at the remaining
levels.

The data suggest that at p = pmax, the energy levels that do not go exponentially to
zero have the same finite-size scaling behavior as those in the conformal invariant domain.
This would imply that instead of (4.4) we would have

Δ = 0(1), 3(1), 4(1), 5(2), 6(3), . . . . (4.7)

If confirmed, this would lead us to a strange picture since the scaling dimension Δ = 2
does not appear. This dimension corresponds to the energy–momentum, and therefore
conformal invariance could not apply and we could not explain the finite-size behavior
of the remaining levels. What can go wrong in our picture? One possibility is that the
finite-size scaling of the levels doesn’t satisfy (4.1).
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Figure 9. ln(E1) as a function of the lattice size L for p = pmax. The red line is
a guide for the eyes, and is obtained from a fit where the lattice sizes L = 16–30
were used.

We have computed E2(L) up to L = 18. A fit to the data gives Δ3 = 3.05 in agreement
with what should be expected. Similarly examining E4(L) one finds Δ4 = 3.95 also as
expected. These estimates were found assuming that vs(pmax) is given by equation (4.2).
Can we get Δ = 2 by changing the sound velocity such that E3(L) gives Δ = 2, E5(L)
gives Δ = 3, E6(L) gives Δ = 4, . . .? We have computed the ratios E5(L)/E3(L) and
E6(L)/E3(L) as a function of L. One should obtain 4/3, respectively 5/3, if one had (4.3)
and 3/2, respectively 2, if the energy–momentum tensor would be present. In figures 11
and 12 we show these ratios as functions of 1/L. Cubic fits give the values 1.32, respectively
1.64. We conclude that (4.7) is most probably correct. We have also checked that there
are no energy crossings for the levels which cluster around Δ = 7.

The analysis of the energy levels (compare (4.4) with (4.7)) suggests that at p = pmax

the partition function (4.3) changes in the following way: the degeneracy at each even
value of Δ decreases by one unit. Each energy level which left the Virasoro representation
at non-zero even values of Δ moves to Δ = 0 which becomes infinitely degenerate. This
opens a problem in the representation theory of the algebra which might be solvable since
the central charge is c = 0. In section 6 we are going to learn more about this puzzle.

5. From eigenfunctions of the Hamiltonian to QSS

We have seen in the last section that some eigenvalues of the Hamiltonian vanish
exponentially. Here we will show what their connection is to QSS. In order to do so,
we first prove a special property of Hamiltonians in the presence of an absorbing state.
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Figure 10. Estimates of −d/ ln(L){ln(E1(L))} as a function of 1/L for different
lattice sizes (p = pmax).

We denote the vector space corresponding to n + 1 configurations by |0〉, |i〉 (i =
1, 2, . . . , n), in which we have chosen |0〉 to be the absorbing state. The Hamiltonian has
the following properties:

Hi,0 = 0, H0,0 = 0, Hi,j ≤ 0, (5.1)

H0,j +
∑

i

Hi,j = 0 (j = 1, 2, . . . , n). (5.2)

Assume that Ek (k = 1, . . . , n) is a non-vanishing eigenvalue of H with an eigenvector

(y
(k)
0 , y

(k)
1 , . . . , y

(k)
n ). We can show that the sum of the components of any eigenvector is

equal to zero:

y
(k)
0 +

∑

i

y
(k)
i = 0 (k = 1, 2, . . . , n). (5.3)

Using (5.1) and (5.2) we have:

Eky
(k)
0 =

∑

i

H0,iy
(k)
i = −

∑

j,i

Hj,iy
(k)
i = −Ek

∑

j

y
(k)
j , (5.4)

from which the identity (5.3) follows.
We consider now the reduced matrix H ′

i,j = Hi,j (i, j = 1, 2, . . . , n) (the configuration
|0〉 is taken out). Let E1 be the lowest non-vanishing eigenvalue, from (5.1) and using the
Perron–Frobenius theorem, we get:

y
(1)
i ≥ 0, (5.5)
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Figure 11. Ratio samong the two lowest eigenenergies, at p = pmax, that does
not vanish exponentially. The data are plotted as a function of 1/L for lattice
sizes L = 8–18. A cubic fit was done by using the five largest lattice sizes.

and using (5.3), y
(1)
0 < 0. From the same theorem we also learn that E1 is the unique

eigenvalue for which (5.5) occurs. For the other eigenvalues, at least one component of

the wavefunction is negative, i.e. equation (5.5) is not valid for y
(k)
i (k > 1).

The solutions of the differential equation (2.5) are

P0(t) = 1 +
∑

k

Aky
(k)
0 exp(−Ekt), Pi(t) =

∑

k

Aky
(k)
i exp(−Ekt). (5.6)

The n constants Ak are determined from the initial conditions.
At large values of L and t, the exponentially falling energies give the major

contributions to P0(t) and Pi(t). Among them, E1 plays a special role. Note only is
E1 the smallest energy, but the components of its eigenfunction are positive (5.5). This
implies that for a large range of L and t (both of them large), one can keep only the term
with k = 1 in the sums appearing in (5.6). The situation is different at very large values
of L when all the exponentially falling energies are practically equal to zero and more
terms can appear in (5.6). Independent of the initial conditions, the term with k = 1
has to be present in the sums (5.6) in order to ensure the positivity of the probabilities
P0(t) and Pi(t), since for the other eigenfunctions (5.5) are not valid. For example, the
eigenfunctions corresponding to the levels E4(L) and E9(L) of figure 8 have components
with both signs in the sum giving Pi(t).

We are now in a position to show how exponentially falling energies like E1(L)
(see (4.5)) can be the origin of QSS. For our discussion we will assume that the term
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Figure 12. Ratio among the third and second lowest eigenenergies, at p = pmax,
that does not vanish exponentially. The data are plotted as a function of 1/L,
for lattice sizes L = 10–18. A cubic fit was done by using the four largest lattice
sizes.

with k = 1 alone is present in (5.6). It turns out that this assumption will help to explain
all the results obtained for the Monte Carlo simulations. The probability vector |P (t, L)〉
becomes:

|P (t, L)〉 = [1 − a(L) exp(−E1(L)t)]|0〉 + a(L)
∑

i

pi(L)|i〉 exp(−E1(L)t), (5.7)

where we have used (5.3) and (5.5)

a(L) = A1

∑

i

y
(1)
i (L); pi(L) = y

(1)
i (L)

/∑

i

y
(1)
i (L). (5.8)

Note that pi(L) gives the probability of finding the system in configuration |i〉 if the system
is in the stationary state of the reduced Hamiltonian H ′, that acts in the vector space
where the substrate is absent. Thus, equation (5.7) explains the occurrence of a QSS. If
L is large enough, E1(L) is negligible, and one finds:

|P (L)〉 = (1 − a(L))|0〉 + a(L)|Pns(L)〉. (5.9)

Here a(L) depends on the initial conditions and it is not equal to zero. |Pns(L)〉 is a
probability distribution function of configurations in which the substrate is not present.
Equation (5.9) therefore describes the QSS. Using Monte Carlo simulations we have
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measured the probability of finding the system in the substrate. For the OD initial
condition (see section 3 for the definition), one finds:

1 − a(L) ∼ 4.5/L. (5.10)

For the PYR initial condition one finds 1 − a(L) = 10−5 for L = 96 (we did not compute
a(L) for the TD and AD initial conditions). This implies that for large values of L one
has

|P (L)〉 = |Pns(L)〉, (5.11)

and the substrate does not occur in the QSS. We postpone the discussion of the results
shown in figure 6 up to section 6.

6. The quasistationary states

In this section we are going to identify the QSSs observed in the Monte Carlo simulations
(see figures 4–7), and find a puzzle. The basis of our identification are equations (5.7),
(5.9) and (5.11).

We have taken large lattices and started our simulations with the PYR initial
condition. We first looked at the average height h(L). The results are shown in figure 13.
The data can be fitted by a straight line. Taking only the two largest lattice sizes we
obtain:

h(L) = 0.1068 ln(L) + 0.042, (6.1)

in astonishing agreement with the expression (2.8) derived [11, 12] assuming conformal
invariance and used to describe the data for 0 ≤ p < pmax. Since for the large lattices
we have considered, we can use (5.11) and this would imply that |Pns(L)〉 is given by the
same function as the one seen away from pmax.

If confirmed, this result would be surprising, because as we have discussed in section 4,
as compared to the conformal invariant domain, at p = pmax the finite-size spectrum of
the Hamiltonian is a ‘mutilated’ one. It lacks not only the energy–momentum tensor
but other levels too. On the other hand the space-like correlation functions look to be
unaffected.

In figure 14 we show for the AD initial condition the density of contact points g(x, L)
for various lattice sizes divided by the finite-size scaling distribution (2.9) in the QSS. The
coincidence of the pmax data and the expectation coming from conformal invariance in the
QSS is astonishing (for the large lattices considered here a(L) is practically equal to 1).

From now on, we will assume that for large lattices the QSS correlators are those
of the conformal invariant model (RPM) and will try to explain the results described in
section 3.

We use equation (5.9) and the observation that for the initial condition PYR a(L) = 1;
taking a(96) = 0.975 for the TD initial condition we obtain the results for TD presented
in both figures 4 and 5 (we do not have at hand an independent measurement of a(L) for
the TD initial condition).

We proceed by looking for a description of the data presented in figure 6, where
the time dependence of the quantity 1 − τmax(L, t), taking the OD initial condition, is
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Figure 13. The average height h(L) as a function of ln(L) in the QSS. L = 1024,
2048, 4096 and 8192. We have used PYR as an initial distribution.

shown. τmax(L, t) is the average density of minima and maxima which is equal to 1 for
the substrate. We use equations (5.7) and (5.10) to get:

1 − τmax(L, t) = [−4.5/L + 1 − (1 − 4.5/L)τ(L)] exp(−E1(L)t). (6.2)

The function τ(L) is known analytically only for p = 1 [2]. It is equal to 3/4 in the large
L limit and has non-universal corrections of order 1/L which are unknown for p = pmax.
In principle these corrections can be determined by looking at the QSS obtained using
PYR initial conditions. We can, however, use the result obtained in [1] for p = 1.99 where
we found τ(L) ≈ 0.75− 0.3/L and use it in (6.2) to get a fair description of the data. We
obtain

1 − τmax(L, t) ≈ (0.25 − 0.8/L) exp(−E1(L)t). (6.3)

The value of E1(L) can be estimated from (4.5). In figure 15 we use this function, together
with the predicted values of E1(L) given in (4.5), to compute the time dependence of
1 − τmax(L, t) for the same lattice sizes used in figure 6. We can see that the overall
behavior of figures 15 and 6, generated by the Monte Carlo simulations, is the same.

7. Conclusions

The parameter p which enters in the definition of the peak adjusted raise and peel
stochastic model determines a domain 0 ≤ p < pmax in which one has conformal invariance.

doi:10.1088/1742-5468/2011/09/P09030 18

http://dx.doi.org/10.1088/1742-5468/2011/09/P09030


J.S
tat.M

ech.
(2011)

P
09030

From conformal invariance to quasistationary states

Figure 14. The density of contact points g(x,L) as a function of x/L at pmax,
divided by (2.9). L = 1024, 2048, 4096 and 8192. Initial condition AD. The
average are obtained from 3500 samples running 106 Monte Carlo steps.

In the finite-size scaling regime all the properties are independent on p which appears only
in the sound velocity vs(p) which fixes the time scale. If p > 1, global properties of the
configurations (the number of peaks) and the size of the system L, enter in the rates.
The larger the number of peaks of a configuration, the smaller are the rates to escape
the configuration. As a result, at p = pmax = 2(L − 1)/L the configuration with the
largest number of peaks, which is the substrate, becomes an absorptive state for any size
of the system. Since there are no fluctuations in the ground-state of the system, we expect
conformal invariance to be lost and get into a massive phase. This is not the case and a
fascinating phenomenon takes place.

The new features of the model at p = pmax are encoded in figures 4 and 6. If the
evolution of the system starts with a given initial configuration, instead of moving fast
to the absorbing state, the system gets stuck in another configuration and the relaxation
time grows exponentially with the size of the system. This is a QSS. In figure 8 we look
at the spectrum of the Hamiltonian and follow the change of the scaled energies with
increasing values of the parameter p. From the 11 energy levels shown in the figure, eight
of them are those of the conformal invariant region (0 ≤ p < pmax). Three of them go
exponentially to zero for large values of L.

In this paper we have tried to clarify this phenomenon. Based, unfortunately, on
numerics, the following picture emerges. The wavefunction corresponding to the first
excited state whose energy vanishes exponentially, gives the probability distribution
function of the QSS. This is due to a peculiar property of the first excited state of
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Figure 15. The average density of minima and maxima τmax(L, t)(L, t) subtracted
from 1, as a function of time for the same lattice sizes L, as in figure 6. The
initial condition is OD. The data were generated from the prediction (6.3), using
E1 given by (4.5).

any stochastic Hamiltonian in the presence of an absorbing state. For finite values
of L, the QSS depends on the initial conditions, but in the thermodynamical limit it
becomes independent of them. The ground-state observed for any finite L decouples
from the system in the thermodynamic limit and is replaced by at least one of the
excited states which have energies decreasing exponentially to zero for large values of
L (some of these states might also decouple from the system). Unexpectedly, the finite-
size scaling properties of the QSS are identical to the one observed for the ground-state
in the conformal invariant domain.

This picture describes a strange way to break conformal invariance. Part of the
spectrum stays unchanged (not the scaling dimension of the energy–momentum tensor!)
and another part sinks in the vacuum which becomes possibly infinite degenerate. We have
no idea how to explain this observation. At the same time, the space-like correlations seen
in the QSS are those of the conformal domain. This is obviously an unexplained paradox.
A study of space–time correlation functions should shade light in this problem. We plan
to do it in the future.

We have studied only four initial conditions and found essentially only one QSS. This
QSS could be related to the eigenfunction corresponding to the first excited state. It is
most probable that we have missed other QSSs which should be related to some linear
combination of eigenfunctions corresponding to the remaining exponentially decaying
energies.
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The search for QSSs should continue in some extensions of the PARPM. One can
look at the fate of defects like those studied in [14] when the rates are adjusted to the
number of peaks. Another interesting avenue is to study the effect of changing the rates
depending on the number of peaks in the extension [2, 3] of the raise and peel model in
which the rates of adsorption and desorption are not equal.
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