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Recurrent Points of Continuous
Functions on Connected Linearly

Ordered Spaces

D. Alcaraz and M. Sanchis (�)

Summary. - Let L be a connected linearly ordered topological space

and let f be a continuous function from L into itself. If P (f) and
R(f) denote the set of periodic points and the set of recurrent

points of f respectively, we show that the center of f is clLP (f)
and the depth of the center is at most 2. Furthermore we have

clLP (f) = clLR(f).

1. Introduction

Let X be a topological space and let f be a continuous function
from X into itself. A point x 2 X is said to be a nonwandering

point of f if for any neighborhood U of x there exists n 2 N such
that fn(U) \ U 6= ;. The set of nonwandering points of f will be
denoted by 
(f). If we de�ne 
1(f) = 
(f); 
n(f) = 
(f j
n�1),
n � 2, where f j
n�1 means the restriction of f to 
n�1(f), then the
set 
1(f) = \

1
n=1
n(f) is called the center of f and the minimal

n 2 N [ f1g satisfying 
n(f) = 
1(f) is called the depth of the
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center of f. Of course, 
1(f) can be the empty set if X is not
compact.

As usual, x 2 X is said to be a periodic point of f of period n
if there exists n 2 N such that fn(x) = x and f i(x) 6= x whenever
1 � i � n � 1. If n = 1 then x is called a �xed point of f . A point
x 2 X is called a recurrent point of f if for every neighborhood U of
x there exists n 2 N such that fn(x) 2 U , i.e., there is a subset of the
sequence ffn(x)gn2N converging to x. F (f); P (f); R(f) mean for the
set of �xed points, periodic points and recurrent points respectively.

The notion of periodic point, recurrent point and center of a
continuous function from a topological space into itself is one of the
most important notions in Dynamical Systems. Usually, it is not
an easy matter to determine the center and the depth of the center
of f . In addition, the equality clXP (f) = clXR(f) does not al-
ways hold. The most paradigmatic example arises when considering
an irrational rotation f from the circle into itself, then P (f) = ;
and R(f) is the whole circle (see, for example, [4, Theorem 3.13]).
However, for any continuous function f from the interval [0; 1] (en-
dowed with the usual topology) into itself, it is well-known that

2(f) = clXP (f) = clXR(f) and the depth of the center of f is at
most 2 (see [3] and [8] for details). These results were extended in [10]
to continuous functions from the n-od = fz 2 C : zn 2 [0; 1]g into
itself and in [11] to general continuous tree functions. In this note we
will state these results for continuous functions from a connected lin-
early ordered topological space into itself. The study of Dynamical
Systems on connected linearly spaces was started in [9]. In general,
the situation is di�erent from the case of Dynamical Systems on the
interval (see, for example, the interesting work [1]). However, we
show here that the topology induced by a linear order permits us to
adapt the techniques used in Dynamical Systems on the interval in
order to improve the results expounded above.

We remind the reader that a linearly ordered (topological) space

(abbreviated LOS) is a triple (L; �; T ) where (L; �) is a linearly
ordered set and T is the topology induced on L by the linear order
�, i.e., a base for open sets in T is the family of all open intervals in
L.

Given a LOS (L; �; T ), our notation for the intervals in (L; �) is
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the usual one. For instance, if x; y 2 L, ]x; y[ we will denote the open
interval fz 2 L j x < z < yg whenever x < y and ]  ; y[ the open
interval fz 2 L j z < yg. hx; yi stands either for the open interval
]x; y[ if x < y or for the open interval ]y; x[ if y < x. When no con-
fusion can result, we write L instead of (L; �; T ). We recall that a
LOS is said to be Dedekind complete provided that every nonempty
subset with an upper bound has a supremum (or, equivalently, ev-
ery nonempty subset with a lower bound has an in�mum). It is
well-known that a LOS L is connected if and only if L is Dedekind
complete and densely ordered, i.e., it is Dedekind complete and for
each pair of elements x; y 2 L with x < y there exists z 2 L such
that x < z < y. The reader can �nd the standard references con-
cerning linearly ordered spaces in [7]. Our notation and terminology
are standard. The abbreviation CLOS stands for connected, linearly
ordered space. clLA and intLB mean for the closure and the interior
of a subset A in L respectively. Given a topological space L, we will
denote by C(L; L) the set of all continuous functions from L into
itself. Unde�ned notions are usual ones as in [5] and [6].

2. The results

It is not a hard matter to check that a continuous function from a
CLOS into itself can admit no �xed points. For instead, the function
f from the real line R (endowed with the usual topology) into itself
de�ned by the requirement that f(x) be x+1 whenever x 2 R admits
no recurrent points. We begin by stating the relationship between
�xed points and recurrent points in the realm of CLOS.

Lemma 2.1. Let L be a CLOS and let f 2 C(L; L). If there are

x; y 2 L such that f(x) � x and f(y) � y, then f has a �xed point

in clL(hx; yi).

Proof. Let x; y be such that f(x) < x and f(y) > y. Suppose that
f has no �xed points in clL(hx; yi). De�ne

A = fz 2 clL(hx; yi) : f(z) < zg;

B = fz 2 clL(hx; yi) : f(z) > zg:
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Then A and B are nonempty pairwise disjoint subsets of clL(hx; yi)
such that clL(hx; yi) = A [ B. We shall show that A and B are
closed subsets of clL(hx; yi). For this in turn, let z 2 clL(hx; yi) be
a point such that there exists a net fz�g�2D � A converging to z.
Since, for each � 2 D, f(z�) < z�, it is a routine matter to check
that f(z) � z. On the other hand, since f has no �xed points in
clL(hx; yi), we have that f(z) < z. Thus, A is a closed subset of
clL(hx; yi). An argument similar to this one proves that B is also a
closed subset of clL(hx; yi). So, the connected set clL(hx; yi) is the
union of two pairwise disjoint closed subsets, a contradiction. Thus,
there exists z 2 clL(hx; yi) satisfying that f(z) = z and the proof is
complete.

The following lemma is an easy, but useful, consequence of Lemma
2.1. The argument necessary to prove it was extracted from the
similar situation on the interval (see, for example, [2, Lemma 4.14]).
From now on, we shall make no special mention of the well-known
fact that x is a periodic point of a function f 2 C(L; L) if and only
if x is a �xed point of fn for some n � 1.

Lemma 2.2. Let L be a CLOS and let f 2 C(L; L). Let U be an

open interval which does not contain periodic points. If x 2 U\
(f),
then fn(x) =2 U for every n � 1.

Proof. Suppose there exists n � 1 such that fn(x) 2 U . We can
assume, without loss of generality, that x < fn(x). Then, since fn

is continuous, there are pairwise disjoint open subintervals of U , U1
and U2 satisfying

x 2 U1; f
n(x) 2 U2; f

n(U1) � U2:

As x is nonwandering, we can �nd y 2 U1 and m � n so that also
fm(y) 2 U1. Obviously, fm(y) < fn(x). Set z = fn(y). Then
z > f l(z) where l = m� n.

On the other hand, if y < fnk(y) for some k � 1, then y <
fnk+1(y), since fnk does not have a �xed point in [y; fn(y)] � U .
So, it follows by induction on k � 1 that y < fnk(y) for each k � 1.
In particular, y < f ln(y). But, in the same way, f l(z) > z implies
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that f ln(z) > z. Therefore, by Lemma 2.1, there exists w 2 hy; zi
such that f ln(w) = w which is a contradiction.

Corollary 2.3. Let L be a CLOS. For each f 2 C(L; L), the

following conditions are equivalent:

1. F (f) 6= ;;

2. R(f) 6= ;;

3. 
(f) 6= ;;

4. P (f) 6= ;.

Proof. The implications (1) =) (2) and (2) =) (3) are clear. So,
we need only check (3) =) (4) and (4) =) (1).

(3) =) (4) Let x 2 
(f). Since L is connected, L is an open
interval. As fn(x) 2 L for every n � 1, by Lemma 2.2, L contains
periodic points.

(4) =) (1) Let x 2 P (f). Suppose, without loss of generality,
that the period of x is n > 1 and x < f(x). Then it must exists
z 2 ffk(x)gn�1k=1 such that z > f(z). By Lemma 2.1, f has a �xed
point in clL hx; zi.

The following theorem is the starting point of our results on re-
current points in CLOS. First we need the following lemmas. The
�rst one was proved in [5, Theorem 1], and the second one is the
version in the realm of CLOS of Lemma 4 in [3]. We recall that a
point x 2 L is called an eventually periodic point of f provided that
x is not a periodic point (of f) and there exists n � 1 such that
fn(x) is a periodic point (of f).

Lemma 2.4. Let X be a (Hausdor�) topological space.

If f 2 C(X; X), then R(fn) = R(f) for each n 2 N.

Lemma 2.5. Let L be a CLOS and let f 2 C(L; L). If an open

interval U contains eventually periodic points and no periodic points,

then U \R(f) = ;.
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Proof. Let x 2 U be an eventually periodic point of f such that
fn(x) 2 P (f) for some n > 1. Let us �nd a positive integer m such
that m � n � 1 and fn+m(x) = fn(x). Suppose, without loss of
generality, that fm(x) > x. Then

fkm(x) = fm(x) > x for all k � 1:

We will prove that

fkm(y) > y for all y 2 U and for all k � 1:

If it is not the case, there exist y 2 U and k � 1 such that fkm(y) < y.
By Lemma 2.1, there exists a �xed point of fkm in hx; yi. This is
contrary to the hypothesis.

Next, we will show that U contains no recurrent points of fm. In
fact, let W = fy 2 U j fkm(y) 2 U for some k � 1g. Obviously, if
y 2 U nW , y is not a recurrent point of fm. On the other hand, if y 2
W and r = minfk � 1 j fkm(y) 2 Ug, we have that U \ ]f rm(y);! [
is an open neighborhood of y missing ffkm(y)gk�1. So, we have
obtained that U \R(fm) = ;. By Lemma 2.4, U \R(f) = ; and the
proof is complete.

Theorem 2.6. Let L be a CLOS and let f 2 C(L; L). If x 2 
(f)n
clLP (f), then x =2 clLR(f).

Proof. If P (f) = ; the result is a consequence of the Corollary 2.3.
So, suppose that P (f) 6= ;. Let x 2 L n clLP (f). According to
[6, 3O.1], L n clLP (f) is expressible in a unique way as a union of
disjoint maximal open intervals,

L n clL(P (f)) =
G
�2�

I� :

Let us take �0 2 � such that x 2 I�0 . Since x is nonwandering, there
exists n 2 N such that fn(I�0)\I�0 6= ;. There are two possibilities:

(1) fn(I�0) � I�0 . In this case, since I�0 does not meet P (f),
the function
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fn : I�0 ! I�0

has no �xed points. Suppose, without loss of generality, that fn(x) <
x. So, because I�0 is a CLOS, Lemma 2.1 says us that

fn(y) < y for all y 2 I�0 :

But fkn(x) 2 I�0 for all k 2 N and, consequently,

fkn(x) < f (k�1)n(x) < x for all k � 2:

Applying again Lemma 1, we obtain that fkn(y) < f (k�1)(y) < y for
all k � 2 and all y 2 I�0 . Now, let y 2 I�0 and consider r = minfk j
fkn(y) 2 I�0g. De�ne the open neighborhood of y, V as:

V =

�
I�0 if k = 0;

I�0 \ ]f
kn(y);! [ if k � 1:

It is clear that V \ffnk(y)gk�1 = fyg. So, y is not a recurrent point
of fn. By Lemma 2.4, y is not a recurrent point of f . We have just
proved that I�0 \R(f) = ;. Thus x =2 clLR(f).

(2) fn(I�0)\ (L n I�0) 6= ;. In this case, beginning from the form
of I�0 we need to distinguish three cases: (i) I�0 =]p; q[ for some
p; q 2 L, (ii) I�0 =] ; q[ for some q 2 L, (iii) I�0 =]p;! [ for some
p 2 L. (Notice that P (f) = ; whenever I�0 is the whole L).

We only prove the Case (i). The other ones follow in a similar
way. So, suppose that there exist p; q 2 L such that I�0 = ]p; q[.

We will start by showing that p; q 2 clLP (f). We will only do for
p, the proof for q being analogous. In fact, if p =2 clLP (f), there is a
neighborhood [x; y] of p such that [x; y]\P (f) = ;. Consider now the
open interval ]x; q[. Then ]x; q[ \ P (f) = ; and ]x; q[ � L n clLP (f).
This contradicts that I�0 be maximal. Thus, p 2 clLP (f).

Now, as I�0 \ P (f) = ;, we can apply Lemma 2.1 in order to
suppose, without loss of generality, that fn(x) < x for each x 2 I�0 .
The �rst step of the proof is to show that q =2 fn(I�0). In fact,
if q 2 fn(I�0), there is y 2 I�0 such that fn(y) = q < y which
contradicts that q is the least upper bound of I�0 .
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Next, since fn(I�0) \ (L n I�0) 6= ;, f
n(I�0) \ I�0 6= ; and q =2

fn(I�0), it is an easy matter to check that p 2 intLf
n(I�0) and,

consequently, we can choose a neighborhood V of p such that V �
fn(I�0). As p 2 clLP (f), there exists y 2 I�0 such that fn(y) 2
P (f). So, I�0 contains eventually periodic points and the result
follows from Lemma 2.5.

Theorem 2.7. Let L be a CLOS and let f 2 C(L; L).
Then clLR(f) = clLP (f).

Proof. Obviously, clLP (f) � clLR(f). Conversely, let x 2 L n
clLP (f). If x is a nonwandering point for f , by Theorem 2.6, x =2
clLR(f). On the other hand, if x =2 
(f), there exists a neighborhood
U of x such that fn(U) \ U = ; for each n 2 N. So, U contains no
recurrent points and the proof is complete.

As a consequence of the Theorem 2.7 we can obtain the following
result due to Coven and Hadlund (see [3, Theorem 1]).

Corollary 2.8. For each continuous function f from the unit in-

terval I into itself, clIP (f) = clIR(f).

We close by turning our attention to the center and the depth of
the center of a function f 2 C(L; L).

Theorem 2.9. Let L be a CLOS and let f 2 C(L; L). Then


2(f) = clLP (f). Hence the depth of the center is at most 2 and the

center is clLP (f).

Proof. Clearly clLP (f) � 
n(f) for each n 2 N. So, we need only
check that 
2(f) � clLP (f). To see this, suppose that x 2 
(f j
(f))
and let U be an open interval containing x. Since U\
(f) is open in

(f), we have that (U \ 
(f)) \ fn (U \ 
(f)) 6= ; for some n > 1,
that is, there exists y 2 U \
(f) such that fn(y) 2 U \
(f). Hence,
by Lemma 2.2, U \ P (f) 6= ;. Thus, x 2 clLP (f).
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