130 research outputs found

    Relativistic Reduced-Mass and Recoil Corrections to Vacuum Polarization in Muonic Hydrogen, Muonic Deuterium and Muonic Helium Ions

    Get PDF
    The reduced-mass dependence of relativistic and radiative effects in simple muonic bound systems is investigated. The spin-dependent nuclear recoil correction of order (Zalpha)^4 mu^3/m_N^2 is evaluated for muonic hydrogen and deuterium, and muonic helium ions (mu is the reduced mass and m_N is the nuclear mass). Relativistic corrections to vacuum polarization of order alpha (Zalpha)^4 mu are calculated, with a full account of the reduced-mass dependence. The results shift theoretical predictions. The radiative-recoil correction to vacuum polarization of order alpha (Z\alpha)^5 ln^2(Zalpha) mu^2/m_N is obtained in leading logarithmic approximation. The results emphasize the need for a unified treatment of relativistic corrections to vacuum polarization in muonic hydrogen, muonic deuterium and muonic helium ions, where the mass ratio of the orbiting particle to the nuclear mass is larger than the fine-structure constant.Comment: 6 pages; RevTe

    The Lamb shift contribution of very light millicharged particles

    Full text link
    The leading order vacuum polarization contribution of very light millicharged fermions and scalar (spin-0) particles with charge \epsilon e and mass \mu to the Lamb shift of the hydrogen atom is shown to imply universal, i.e. \mu-independent, upper bounds on \epsilon: \epsilon \lsim 10^{-4} for \mu \lsim 1 keV in the case of fermions, and for scalars this bound is increased by a factor of 2. This is in contrast to expectations based on the commonly used approximation to the Uehling potential relevant only for conventionally large fermion (and scalar) masses.Comment: 10 pages including 3 figures, version to appear in Physical Review D (Rapid Communications

    Group analysis and renormgroup symmetries

    Get PDF
    An original regular approach to constructing special type symmetries for boundary value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries, based on modern group analysis are described. Application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model.Comment: 17 pages, RevTeX LATeX file, to appear in Journal of Mathematical Physic

    Relativistic recoil corrections to the electron-vacuum-polarization contribution in light muonic atoms

    Full text link
    The relativistic recoil contributions to the Uehling corrections are revisited. We consider a controversy in recent calculations based on different approaches including Breit-type and Grotch-type calculations. We have found that calculations of those authors were in fact done in different gauges and in some of those gauges contributions the retardation and two-photon-exchange effects were missed. We have evaluated such effects and obtained a consistent result from those approaches. We present a correct expression for the Grotch-type approach which produces a correct gauge-invariant result. We also consider a finite-nuclear-size correction for the Uehling term. The results are presented for muonic hydrogen and deuterium atoms and for muonic helium-3 and helium-4 ions.Comment: Submitted to Phys. Rev. A; in v.2 results for muonic helium are correcte

    Breit Hamiltonian and QED Effects for Spinless Particles

    Get PDF
    We describe a simplified derivation for the relativistic corrections of order α4\alpha^4 for a bound system consisting of two spinless particles. We devote special attention to pionium, the bound system of two oppositely charged pions. The leading quantum electrodynamic (QED) correction to the energy levels is of the order of α3\alpha^3 and due to electronic vacuum polarization. We analyze further corrections due to the self-energy of the pions, and due to recoil effects, and we give a complete result for the scalar-QED leading logarithmic corrections which are due to virtual loops involving only the scalar constituent particles (the pions); these corrections are of order α5lnα\alpha^5 \ln \alpha for S states.Comment: 12 pages, LaTeX; references added (J. Phys. B, in press

    Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion

    Get PDF
    Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell, created under laser heating of nanoparticle in water, were theoretically investigated. Vapor shell expansion leads to decreasing up to one to two orders of magnitude in comparison with initial values of scattering and extinction of the radiation with wavelengths 532 and 633 nm by system while shell radius is increased up to value of about two radii of nanoparticle. Subsequent increasing of shell radius more than two radii of nanoparticle leads to rise of scattering and extinction properties of system over initial values. The significant decrease of radiation scattering and extinction by system of nanoparticle-vapor shell can be used for experimental detection of the energy threshold of vapor shell formation and investigation of the first stages of its expansion

    Dislocation Kinks in Copper: Widths, Barriers, Effective Masses, and Quantum Tunneling

    Get PDF
    We calculate the widths, migration barriers, effective masses, and quantum tunneling rates of kinks and jogs in extended screw dislocations in copper, using an effective medium theory interatomic potential. The energy barriers and effective masses for moving a unit jog one lattice constant are close to typical atomic energies and masses: tunneling will be rare. The energy barriers and effective masses for the motion of kinks are unexpectedly small due to the spreading of the kinks over a large number of atoms. The effective masses of the kinks are so small that quantum fluctuations will be important. We discuss implications for quantum creep, kink--based tunneling centers, and Kondo resonances

    MoS2@ZnO Nanoheterostructures Prepared by Electrospark Erosion for Photocatalytic Applications

    Get PDF
    MoS2@ZnO nanoheterostructures were synthesized by electrospark erosion of zinc granules in a hydrogen peroxide solution and simultaneous addition of MoS2 nanostructured powder into the reaction zone. The morphology, size of the crystallites, as well as elemental and phase composition of the prepared structures, were examined using transmission electron microscopy and X-ray diffraction analysis. It was found that the synthesized products represent heterostructures containing MoS2 nanoparticles formed on ZnO nanoparticles. Raman spectroscopy and photoluminescence analysis were also used for characterization of the prepared heterostructures. The obtained MoS2@ZnO nanostructures revealed an intense broad emission band ranging from 425 to 625 nm for samples with different fractions of MoS2. Photocatalytic measurements showed that the maximal hydrogen evolution rate of the prepared nanoheterostructures was about 906.6 μmol·g−1·h−1. The potential of their application in photocatalytic water splitting was also estimated
    corecore