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PHYSICAL REVIEW A 84, 012505 (2011)

Relativistic reduced-mass and recoil corrections to vacuum polarization in muonic hydrogen,
muonic deuterium, and muonic helium ions

U. D. Jentschura
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

(Received 11 April 2011; revised manuscript received 1 June 2011; published 11 July 2011)

The reduced-mass dependence of relativistic and radiative effects in simple muonic bound systems is
investigated. The spin-dependent nuclear recoil correction of order (Zα)4 μ3/m2

N is evaluated for muonic
hydrogen and deuterium and muonic helium ions (μ is the reduced mass and mN is the nuclear mass). Relativistic
corrections to vacuum polarization of order α(Zα)4μ are calculated, with a full account of the reduced-mass
dependence. The results shift theoretical predictions. The radiative-recoil correction to vacuum polarization of
order α(Zα)5 ln2(Zα)μ2/mN is obtained in leading logarithmic approximation. The results emphasize the need
for a unified treatment of relativistic corrections to vacuum polarization in muonic hydrogen, muonic deuterium,
and muonic helium ions, where the mass ratio of the orbiting particle to the nuclear mass is larger than the
fine-structure constant.

DOI: 10.1103/PhysRevA.84.012505 PACS number(s): 36.10.Ee, 12.20.Ds, 14.20.Dh, 31.30.jf

I. INTRODUCTION

In muonic hydrogen and muonic deuterium, the mass ratio
ξN = mμ/mN of the orbiting particle (muon mass mμ) to the
mass of the atomic nucleus mN is not really small against unity.
It evaluates to

ξp = mμ

mp

= 0.112609 . . . ≈ 1

9
, (1a)

ξd = mμ

md

= 0.0563327 . . . ≈ 1

18
, (1b)

where the latest recommended values of the masses have been
used [1]. For muonic helium ions, we have

ξHe3 = mμ

mHe3
= 0.0376223 . . . ≈ 1

26
, (1c)

ξHe4 = mμ

mHe4
= 0.0283465 . . . ≈ 1

35
. (1d)

In all cases, ξN is larger than the fine-structure constant
α ≈ 1/137.036 that governs the relativistic and quantum elec-
trodynamic (QED) effects. Consequently, the reduced-mass
dependence of all QED effects that influence the spectrum must
be taken into account exactly, i.e., to all orders. In calculations,
one must first take into account ξN (if possible) to all orders
before advancing to the next order in the Zα expansion;
otherwise, the higher-order effects in Zα will be shadowed by
the unknown reduced-mass dependence of lower-order terms
in the Zα expansion.

Hence, particular emphasis has been laid in Ref. [2] on the
correct treatment of the reduced-mass dependence of all rela-
tivistic and QED corrections. The statement made in the text
preceding Eq. (17) in Ref. [2], which says “the external field
approximation does not give an accurate result,” can hardly be
overemphasized. Here the external field approximation refers
to the Dirac equation, which is appropriate for heavy muonic
atoms, where the parameter Zα (with Z denoting the nuclear
charge number) is much larger than the mass ratio mμ/mN ,
where mN is the mass of the heavy nucleus. Even a tiny
conceivable error in the handling of, say, the reduced-mass
dependence of the one-loop vacuum polarization (VP) shift in
muonic hydrogen could drastically influence the comparison
of theory and experiment: the current discrepancy [3] of theory

and experiment for the muonic hydrogen Lamb shift amounts
to roughly 0.3 meV, which is about one part per thousand of
the leading vacuum-polarization contribution and thus smaller
than a conceivable additional reduced-mass correction to the
leading VP effect of relative order ξ 3

N .
In comparison to previous studies on heavy muonic atoms

and ions (excellent theoretical overviews are provided in
Refs. [4,5]), the magnitude of the mass ratio is the main
characteristic property of muonic hydrogen and deuterium.
In this paper, we thus revisit the precise treatment of the
vacuum-polarization contribution to the Lamb shift in muonic
hydrogen (μH) and muonic deuterium (μD) as well as muonic
helium ions (μHe3 and μHe4), with a full account of the
two-body structure of the bound system. Starting from the
nonrelativistic Hamiltonian (Sec. II), we proceed to discuss
the nuclear-spin-dependent terms in the Breit Hamiltonian
(Sec. III) before proceeding to the radiatively corrected Breit
Hamiltonian (Sec. IV) and the radiative-recoil correction
(Sec. V). Conclusions are drawn in Sec. VI.

II. NONRELATIVISTIC HAMILTONIAN

The nonrelativistic μH Hamiltonian is separable, and the
nonrelativistic (Schrödinger) Hamiltonian in the center-of-
mass system, where the muon and the nuclear particle carry
opposite momenta �p and − �p, respectively, reads (in natural
units, h̄ = c = ε0 = 1)

H = �p 2

2mμ

+ �p 2

2mN

− Zα

r
= �p 2

2μ
− Zα

r
, μ = mμ

1 + ξN

.

(2)

This equation can be solved exactly in terms of Schrödinger
eigenstates. The nonrelativistic spinor wave functions for the
2S1/2 and 2P1/2 states are exact eigenstates of H and read,
explicitly,

ψ2S(�r) = (Zαμ)3/2

2
√

2
(2 − Zαμr)e− 1

2 Zαμr χM
−1(r̂) , (3)

ψ2P1/2 (�r) = (Zαμ)5/2 r

2
√

6
e− 1

2 Zαμr χM
+1(r̂) , (4)
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where M = ± 1
2 is the magnetic projection, χM

κ
(r̂) is the

standard two-component spin-angular function [6], and κ =
(−1)j+�+1/2 is the Dirac angular quantum number. The
reduced-mass dependence of the wave functions in Eq. (3)
is exact.

The one-loop vacuum-polarization potential Vvp can be
expressed in terms of the action of a linear operator K on
a screened Coulomb potential vvp as follows:

Vvp(r) = K[vvp(me ρ; r)] , vvp(λ; r) = −Zα

r
e−λ r , (5)

with

K[f (ρ)] = 2α

3π

∫ ∞

2
dρ

2 + ρ2

ρ3

√
1 − 4

ρ2
f (ρ), (6)

where me is the electron mass. In the following, we often use
the identification λ = me ρ and define the ratio

βN = me

(Zα μ)
, (7)

which evaluates to βp = 0.7373836 . . . for μH and βd =
0.7000861 . . . for μD (proton and deuteron nuclei, respec-
tively). For muonic helium ions, the values are βHe3 =
0.3438429 . . . and βHe4 = 0.3407691 . . . . (We here refrain
from assigning a subscript to the reduced mass μ, even though
it, of course, depends on the nucleus N because the symbol μN

is reserved, canonically, for the nuclear magnetic moment.) We
then use the exact nonrelativistic unperturbed wave functions
defined in Eq. (3) and calculate the leading VP energy
shifts as

〈2S1/2|Vvp|2S1/2〉 = −(Zα)2 μK

[
2β2

Nρ2 + 1

4(βN ρ + 1)4

]
(8a)

and

〈2P1/2|Vvp|2P1/2〉 = −(Zα)2 μK

[
1

4(1 + βN ρ)4

]
. (8b)

A numerical evaluation of these compact expressions is found
to be in agreement with the literature (see Refs. [2,3,7,8]) and
confirms that the reduced-mass dependence of the leading VP
effect is correctly described by Schrödinger wave functions
scaled with the reduced mass of the system. It is even possible
[9,10] to carry out the integration over the spectral parameter
ρ analytically, with the result

〈2P1/2|Vvp|2P1/2〉 − 〈2S1/2|Vvp|2S1/2〉

= α

π
(Zα)2 μ

[
8πβ3

N

3
+ 1 − 26β2

N + 352β4
N − 768β6

N

18
(
1 − 4 β2

N

)2

+ 4β4
N

(
15 − 80β2

N + 128β4
N

)
3
(
1 − 4 β2

N

)5/2
ln

⎛
⎝1 −

√
1 − 4β2

N

2β

⎞
⎠

⎤
⎦
(9)

for the Lamb shift difference of the leading VP energy correc-
tion. For reference, the 2P1/2-2S1/2 difference of the leading

nonrelativistic vacuum polarization effect is 205.0073 meV
for μH, 227.6346 meV for μD, 1641.885 meV for μHe3, and
1665.772 meV for μHe4. The latter value differs by 0.010 meV
from the value of 1665.782 meV given in Eq. (10) of Ref. [11];
the difference probably is due to updated physical constants
used in our calculation (see also Ref. [1]).

III. BREIT HAMILTONIAN AND BARKER-GLOVER
TERMS

The Breit equation and the corresponding Hamiltonian
follow from the Bethe-Salpeter equation in the limit on an
instantaneous interaction kernel [12] and describe the bound
states of general two-body systems of arbitrary mass ratio
ξN , including higher-order relativistic corrections [13]. For
the 2P1/2-2S1/2 Lamb shift in muonic bound systems, the
relevant terms in the Breit Hamiltonian read [δI = 1 (δI = 0)
for half-integer (integer) nuclear spin; see [14]]

δH =
4∑

j=1

δHj , δH1 = − �p 4

8m3
μ

− �p 4

8m3
N

,

δH2 =
(

1

m2
μ

+ δI

m2
N

)
πZα δ3(r)

2
,

(10)

δH3 = − Zα

2mμmNr

(
�p 2 + 1

r2
rirjpipj

)
,

δH4 = Zα

r3

(
1

4m2
μ

+ 1

2mμmN

)
�σ · �L .

where we use the summation convention for the superscripts i

and j , which denote the Cartesian components of the position
and momentum operators. Using the relations

�∇2

(
1

r

)
= −4π δ3(r) (11)

and

∇ i∇j

(
xi xj

r3

)
= +4π δ3(r), (12)

one may transform δH3 to a more symmetric form,

δH3 = − Zα

2mμmN

pi

(
1

r
+ ri rj

r3

)
pj . (13)

After some algebra, the expectation values of the eigenstates
given in Eq. (3) of the Breit Hamiltonian read

〈2S1/2|δH |2S1/2〉 = −(Zα)4μ
5 + ξN (11 + 13 ξN )

128 (1 + ξN )2

+ δI

(Zα)4 μ ξ 2
N

16 (1 + ξN )2
, (14a)

〈2P1/2|δH |2P1/2〉 = −(Zα4)μ
15 + ξN (33 + 7 ξN )

384 (1 + ξN )2
,

(14b)

012505-2
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and the 2P1/2-2S1/2 difference (2P1/2 is energetically higher)
amounts to

L(2P1/2 − 2S1/2) = (Zα)4μξ 2
N

48 (1 + ξN )2
(4 − 3 δI )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Zα)4μ3

48 m2
N

(δI = 1) ,

(Zα)4μ3

12 m2
N

(δI = 0) .

(15)

The Barker-Glover [15] correction L given in Eq. (15)
evaluates to 0.05747 meV for μH and to 0.12654 meV
for μHe3, in full agreement with the literature [Eq. (46)
of Ref. [2]]. Because the zitterbewegung term is absent for
the spin-1 deuteron nucleus [14] and for the spin-zero alpha
particle, the shift evaluates to L = 0.06722 meV for μD and
to L = 0.29518 meV for μHe4 [cf. Eq. (61) of Ref. [11] and
Eq. (10) of Ref. [16]]. It constitutes a nuclear spin-dependent
recoil correction to the Lamb shift, which is essential for the
correct description of the muonic isotope shift. Equation (15)
is exact to all orders in ξN .

IV. RADIATIVELY CORRECTED BREIT HAMILTONIAN

The massive Breit interaction uses a strictly static timelike
photon propagator component

G00(�q) = − 1

�q2 + λ2
(16)

and spatial components

Gij (�q) = − 1

�q2 + λ2

[
δij − qi qj

�q2 + λ2

]
. (17)

The spatial components are no longer transverse. One then
follows the standard derivation of the Breit interaction given in
Chapter 83 of Ref. [18] but has to avoid pitfalls. The derivation
necessitates the evaluation of Fourier transforms, the most
interesting of which is related to the interaction [cf. Eq. (83.13)
of [18] and Sec. 2 of Ref. [19]],

U ( �p,�q,λ) = − 4πZα

mμ mN

[ �p2

�q2 + λ2
− ( �p · �q)2

(�q2 + λ2)2

+ λ2 �q2

4(�q2 + λ2)2
− λ2 �q · �p

(�q2 + λ2)2

]
. (18)

For λ = 0, the Fourier transform of this expression with respect
to �q gives the term δH3 in Eq. (10). For a massive photon, we
find ∫

d3q

(2π )3
U ( �p,�q,λ)ei �q·�r = δv2(r) + δv3(r), (19)

where δv2(r) and δv3(r) contribute to the Breit potential δvvp

for massive photon exchange,

δvvp = K[δv1 + δv2 + δv3 + δv4] , (20)

where δv1(r) depends on the nuclear spin,

δv1 = Zα

8

(
1

m2
μ

+ δI

m2
N

) (
4πδ3(r) − λ2

r
e−λr

)
, (21)

and the momentum operators act on the ket state in

δv2 = −Zαλ2e−λr

4mμmNr

(
1 − λ r

2
+ 2i �r · �p

)
, (22a)

δv3 = − Zα e−λr

2mμmNr

(
�p2 + 1 + λ r

r2
rirjpipj

)
, (22b)

whereas the spin-orbit coupling is modified to

δv4 = Zα

(
1

4m2
μ

+ 1

2mμmN

)
e−λr (1 + λr)

r3
�σ · �L . (23)

In the terms δv2 and δv3, all the momentum operators act
on the “incoming” wave function (Dirac ket state) and the
Hamiltonian may be used for the evaluation of diagonal
matrix elements. For off-diagonal elements, it is helpful
to symmetrize δv2 and δv3 with respect to outgoing and
incoming momenta, effectively replacing terms of the form
f (�r) i �r · �p by the commutator i [f (�r)�r, �p] and terms of the
form f ij (�r) pi pj by the anticommutator 1

2 {f ij (�r), pi pj }.
In a second step, using the relation 1

2 {A2,B} = AB A +
1
2 [A,[A,B]], one obtains an even more symmetric form, with

δw1 = δv1 , δw4 = δv4 , (24a)

δw2 = −Zαλ2e−λr

4mμmNr

(
1 − λ r

2

)
, (24b)

δw3 = −Zα e−λr

4mμmN

pi

(
δij

r
+ 1 + λ r

r3
rirj

)
pj , (24c)

δvvp = K[δw1 + δw2 + δw3 + δw4] . (24d)

The terms δw2 and δw3 are used in Eq. (21) of Ref. [2].
The α(Zα)4 μ relativistic reduced-mass correction to vacuum
polarization then is the sum of four first-order perturbations
δE

(1)
i and four second-order terms δE

(2)
j ,

δEvp = δE(1) + δE(2) =
4∑

i=1

δE
(1)
i +

4∑
j=1

δE
(2)
j , (25a)

δE
(1)
i = K[〈n�j |δwi |n�j 〉] , (25b)

δE
(2)
j = 2 K

[〈n�j |δHj

∣∣δψn�j

〉]
, (25c)

where |δψn�j
〉 is the wave-function correction due to VP,

∣∣δψn�j

〉 =
(

1

En� − H

)′
vvp |n�j 〉 . (26)

Using a generalization of techniques outlined in Ref. [20], the
perturbation δψn�j

can be evaluated analytically. The detailed
expressions for the reduced Green functions (indicated by
a prime) of the 2S1/2 and 2P1/2 states have been given in
Eqs. (23) and (24) of Ref. [2]. All individual contributions are
listed in Table I in order to facilitate a numerical comparison
with independent calculations. For μH, we obtain a re-
sult of �Evp = δEvp(2P1/2) − δEvp(2S1/2) = 0.018759 meV.

012505-3
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TABLE I. Detailed breakdown of the first-order and second-order individual contributions δE
(1)
i and δE

(2)
j to the relativistic Breit correction

δEvp of vacuum polarization for μH, μD, and muonic helium ions. All units are meV.

μH μD μHe3 μHe4

2P1/2 [meV]
δE

(1)
1 −0.000558 −0.000679 −0.020331 −0.020970

δE
(1)
2 0.000064 0.000038 0.000467 0.000360

δE
(1)
3 −0.000290 −0.000181 −0.004587 −0.003584

δE
(1)
4 −0.002026 −0.002303 −0.085970 −0.087587

δE(1) −0.002811 −0.003125 −0.110421 −0.111781
δE

(2)
1 −0.001124 −0.001545 −0.099980 −0.105132

δE
(2)
2 0.0 0.0 0.0 0.0

δE
(2)
3 −0.000269 −0.000177 −0.008427 −0.006624

δE
(2)
4 −0.001283 −0.001521 −0.093497 −0.095762

δE(2) −0.002676 −0.003243 −0.201904 −0.207518

δEvp −0.005486 −0.006368 −0.312324 −0.319300

2S1/2 [meV]
δE

(1)
1 0.029112 0.034636 0.846700 0.872150

δE
(1)
2 −0.001928 −0.001142 −0.014512 −0.011243

δE
(1)
3 −0.002280 −0.001416 −0.032734 −0.025535

δE
(1)
4 0.0 0.0 0.0 0.0

δE(1) 0.024904 0.032078 0.799454 0.835372

δE
(2)
1 −0.084996 −0.108282 −2.875794 −2.995690

δE
(2)
2 0.044911 0.053594 1.361115 1.402803

δE
(2)
3 −0.009064 −0.005539 −0.106444 −0.082889

δE
(2)
4 0.0 0.0 0.0 0.0

δE(2) −0.049149 −0.060227 −1.621122 −1.675776

δEvp −0.024245 −0.028149 −0.821668 −0.840404

2P1/2-2S1/2 [meV] and comparison to other work
�Evp (this work) 0.018759 0.021781 0.509344 0.521104
Ref. [17] 0.0169
Ref. [11] −0.202
Ref. [16]a 0.0169 0.0214 0.495 0.508

aA conceptually different approach is used in Ref. [16].

This result is not in perfect agreement with published values
[2,16,17]. For comparison, the result indicated in Eq. (25) of
Ref. [2] reads 0.059 meV; and in Eq. (25) of Ref. [17] a result
of 0.0169 meV has been indicated. In Table 1 of Ref. [16],
a numerically equivalent result of 0.0169 meV is given.
(We note that Ref. [16] contains many unnumbered tables;
the referenced table is numbered). The matrix elements of the
relativistic recoil operator given in Eq. (7) of Ref. [16] are
evaluated using unperturbed wave functions. All values given
in Table I are nonperturbative in the mass ratio and take the
wave-function correction into account. A precise comparison
of individual contributions to the approach of Ref. [16] is not
possible at present. As evident from Table I, there are quite
significant differences with published values for μHe4: e.g.,
the entries in Eqs. (26)–(29) and Eq. (41) of Ref. [11] add up
to a correction of −0.202 meV for the 2P1/2-2S1/2 Lamb shift
in μHe4, whereas we obtain +0.521 meV.

A very important question concerns the verifiability of the
results. In self-energy calculations [21], a cross-check of the
calculation consists in the cancellation of an overlapping pa-
rameter that separates different momentum and energy regions
of the physical process. For VP effects in muonic systems, no

such checks are immediately available. Here we note that the
entries for the first-order matrix elements in Table I for μHe4

are in full agreement with the results given in Eqs. (26)–(29) of
Ref. [11]. For the matrix elements needed for δE(1), the limit
as λ → 0 of the matrix elements 〈n�j |δwi |n�j 〉 can be verified
independently, and the calculation can otherwise be performed
analytically, with ease. For the matrix elements needed in the
evaluation of the second-order effects δE(2), we can verify
the first few terms in the asymptotic limit as λ → 0, using the
relation

2 〈n�j |δH
(

1

E − H

)′
vvp|n�j 〉

= 2 〈n�j |δH
(

1

E − H

)′
(Zα)

∂

∂(Zα)
|n�j 〉

−〈n�j |δH
(

1

E − H

)′
Zα r |n�j 〉 λ2 + O(λ3) . (27)

In deriving this relation, the Hellmann-Feynman theorem is
useful for the zeroth-order term in λ. The wave-function per-
turbation in the term of order λ2 can be evaluated analytically.

012505-4
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µ
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µ

N
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ee

N

FIG. 1. Feynman diagrams for the radiative-recoil correction
in two-body muonic bound systems. The three given diagrams
correspond to the vacuum-polarization insertion in the seagull and
two-photon exchange and lead to the leading double logarithm given
in Eq. (29).

V. RECOIL CORRECTION TO VACUUM POLARIZATION

Beyond the radiative modifications of the static Breit
Hamiltonian, the recoil correction to vacuum polarization
can be obtained by the insertion of vacuum polarization
loops into the Salpeter recoil correction [22–24]. The recoil
correction is the sum of four terms [24]; two of these (low- and
middle-energy parts) describe the frequency-dependent part of
the Breit interaction, beyond the static Breit Hamiltonian given
in Eq. (10), and two further terms (seagull and high-energy
part) correspond to two-photon exchange.

The seagull term corresponding to Fig. 1 (left), with a
vacuum polarization insertion in the exchange photon, leads
to the integral

δES = − e4

2mμmN

K

[ ∫
d3k1

(2π )3

d3k2

(2π )3

1

ω1k2

1

ω1 + k2

×
(

δij − ki
1 k

j

1

ω2
1

) (
δij − ki

2 k
j

2

k2
2

)] 〈
n�j |ei (�k1+�k2)·�r |n�j

〉
,

(28)

where ω1 =
√

�k2
1 + λ2 is the frequency of the massive photon

in the vacuum-polarization loop. An ultraviolet cutoff � is in-
troduced via multiplication of the integrand by a multiplicative
regularization factor �2

�k2
1+�2

�2

�k2
2+�2 . The auxiliary parameter �

cancels when the high-energy part from two-photon exchange
(see Figs. 1, middle, and 1, right) is added to the result (see
also Ref. [24]). From the integral (28), we extract a leading
double-logarithmic correction,

δES = −4α(Zα)5μ3 δ�0

3π2mμmN n3
ln2

(
4Zαβ2

N

)
, (29)

which is nonvanishing only for S states (� = 0). This correction
evaluates to 0.0003 meV for the 2P1/2-2S1/2 Lamb shift in μH,
0.0002 meV for μD, 0.0072 meV for μHe3, and 0.0056 meV
for μHe4. Because subleading logarithmic terms and nonlog-
arithmic terms are missing, the theoretical uncertainty of the
results in Eq. (29) should be taken as 100 % of the leading
logarithmic correction calculated here.

VI. CONCLUSIONS

Our theoretical investigations are motivated by the necessity
to shed light on the recently observed discrepancy of theory
and experiment in μH (see Ref. [3]). By an explicit evaluation
of the matrix elements of the two-body Breit Hamiltonian, we
obtain the nuclear-spin-dependent recoil contributions to the

Lamb shift in μH and μD given in Eq. (15) and confirm that
the results are exact in the mass ratio, so that the existence of
further recoil corrections [15] can be ruled out at order (Zα)4.
The calculation of the relativistic reduced-mass corrections to
vacuum polarization using the massive Breit Hamiltonian is
shown to involve a nontrivial nuclear-spin-dependent term [see
Eq. (21)]. Our detailed numerical investigation (see Table I)
slightly decreases the observed experimental-theoretical dis-
crepancy [3] (in contrast to a recent investigation [25], where
the authors obtained an increase of the discrepancy based on
a treatment that is perturbative in the mass ratio).

A detailed breakdown of the relativistic corrections to
vacuum polarization, including the reduced-mass corrections,
is given in Table I for muonic hydrogen, muonic deuterium,
and muonic helium ions. For muonic hydrogen, the sum
of the entries in rows 3 and 19 of the theory in the
supplemental material to Ref. [3] minus the entry in row 1
of the same supplemental material amounts to (205.0282 −
0.0041 − 205.0074) meV = 0.0167 meV; this is close to the
result indicated in Table 1 of Ref. [16], which is 0.0169 meV.
Apparently, the second entry in the mentioned combination
(−0.0041 meV) of the supplemental material of Ref. [3] has
been referred to in Refs. [7,16] as a “recoil correction to
vacuum polarization,” whereas we here refer to the effect as
a relativistic correction to vacuum polarization with a proper
account of the reduced-mass dependence. Our approach is
nonperturbative in the mass ratio ξN and isolates the terms
of order α (Zα)4, while treating the two-body aspects of the
problem to all orders.

Our calculations lead to significant shifts of theoretical
predictions for μHe4 with respect to published values (experi-
ments are planned for the near future). Specifically, for μHe4,
our nuclear-spin-dependent Barker-Glover-type correction L

of 0.295 meV differs from the value of 0.074 meV given
in Refs. [11,16] by +0.221 meV. For μHe4, our result for
the relativistic correction to vacuum polarization, with a full
account of the reduced-mass dependence, is 0.521 meV for
the 2P -2S difference, compared with a value of −0.202 meV
given in Ref. [11]. This leads to a total upward shift of
theoretical predictions for the 2P1/2-2S1/2 Lamb shift in μHe4

by +0.934 meV relative to Ref. [11] and by +0.234 meV
relative to Ref. [16]. Here, we include the small correction
of the reference value of the leading VP correction and the
difference in the relativistic correction to vacuum polarization
from Table I.

The radiative-recoil correction obtained in Eq. (29) is nu-
merically small; however, this two-loop bound-state correction
has traditionally been one of the most elusive effects in bound-
state quantum electrodynamics for two-body systems. Its
calculation in leading logarithmic approximation helps to de-
termine the overall uncertainty of theoretical predictions with
regard to the conceptually involved higher-order recoil correc-
tions to VP, given by the two-body nature of the bound system.
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