1,720 research outputs found

    Simon Terrill: Crowd Theory 2004-18, Perspectives, Notes and Comments

    Get PDF
    A catalogue publication for a major survey of the monumental Crowd Theory photographs by Melbourne-born, London-based artist Simon Terrill. The publication coincides with an exhibition bringing together all ten Crowd Theory images for the first time, at the Centre for Contemporary Photography, Melbourne. Inside are a range of responses and documents, including images and texts from the time of each event, as well as three newly commissioned essays reflecting on the project

    Polymer Translocation in Crowded Environments

    Full text link
    We study the effect of the crowded nature of the cellular cytoplasm on the translocation of a polymer through a pore in a membrane. By systematically treating the entropic penalty due to crowding, we show that the translocation dynamics are significantly altered, leading to novel scaling behaviors of the translocation time in terms of chain length. We also observe new and qualitatively different translocation regimes depending upon the extent of crowding, transmembrane chemical potential asymmetry, and polymer length.Comment: 4 figure

    Hard Spheres in Vesicles: Curvature-Induced Forces and Particle-Induced Curvature

    Get PDF
    We explore the interplay of membrane curvature and nonspecific binding due to excluded-volume effects among colloidal particles inside lipid bilayer vesicles. We trapped submicron spheres of two different sizes inside a pear-shaped, multilamellar vesicle and found the larger spheres to be pinned to the vesicle's surface and pushed in the direction of increasing curvature. A simple model predicts that hard spheres can induce shape changes in flexible vesicles. The results demonstrate an important relationship between the shape of a vesicle or pore and the arrangement of particles within it.Comment: LaTeX with epsfig; ps available at http://dept.physics.upenn.edu/~nelson/index.shtml Phys Rev Lett in press (1997

    Depletion forces near curved surfaces

    Full text link
    Based on density functional theory the influence of curvature on the depletion potential of a single big hard sphere immersed in a fluid of small hard spheres with packing fraction \eta_s either inside or outside of a hard spherical cavity of radius R_c is calculated. The relevant features of this potential are analyzed as function of \eta_s and R_c. There is a very slow convergence towards the flat wall limit R_c \to \infty. Our results allow us to discuss the strength of depletion forces acting near membranes both in normal and lateral directions and to make contact with recent experimental results

    Influences of Excluded Volume of Molecules on Signaling Processes on Biomembrane

    Get PDF
    We investigate the influences of the excluded volume of molecules on biochemical reaction processes on 2-dimensional surfaces using a model of signal transduction processes on biomembranes. We perform simulations of the 2-dimensional cell-based model, which describes the reactions and diffusion of the receptors, signaling proteins, target proteins, and crowders on the cell membrane. The signaling proteins are activated by receptors, and these activated signaling proteins activate target proteins that bind autonomously from the cytoplasm to the membrane, and unbind from the membrane if activated. If the target proteins bind frequently, the volume fraction of molecules on the membrane becomes so large that the excluded volume of the molecules for the reaction and diffusion dynamics cannot be negligible. We find that such excluded volume effects of the molecules induce non-trivial variations of the signal flow, defined as the activation frequency of target proteins, as follows. With an increase in the binding rate of target proteins, the signal flow varies by i) monotonically increasing; ii) increasing then decreasing in a bell-shaped curve; or iii) increasing, decreasing, then increasing in an S-shaped curve. We further demonstrate that the excluded volume of molecules influences the hierarchical molecular distributions throughout the reaction processes. In particular, when the system exhibits a large signal flow, the signaling proteins tend to surround the receptors to form receptor-signaling protein clusters, and the target proteins tend to become distributed around such clusters. To explain these phenomena, we analyze the stochastic model of the local motions of molecules around the receptor.Comment: 31 pages, 10 figure

    Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European long‐term field experiments

    Get PDF
    Soil nematode communities and food web indices can inform about the complexity, nutrient flows and decomposition pathways of soil food webs, reflecting soil quality. Relative abundance of nematode feeding and life‐history groups are used for calculating food web indices, i.e., maturity index (MI), enrichment index (EI), structure index (SI) and channel index (CI). Molecular methods to study nematode communities potentially offer advantages compared to traditional methods in terms of resolution, throughput, cost and time. In spite of such advantages, molecular data have not often been adopted so far to assess the effects of soil management on nematode communities and to calculate these food web indices. Here, we used high‐throughput amplicon sequencing to investigate the effects of tillage (conventional vs. reduced) and organic matter addition (low vs. high) on nematode communities and food web indices in 10 European long‐term field experiments and we assessed the relationship between nematode communities and soil parameters. We found that nematode communities were more strongly affected by tillage than by organic matter addition. Compared to conventional tillage, reduced tillage increased nematode diversity (23% higher Shannon diversity index), nematode community stability (12% higher MI), structure (24% higher SI), and the fungal decomposition channel (59% higher CI), and also the number of herbivorous nematodes (70% higher). Total and labile organic carbon, available K and microbial parameters explained nematode community structure. Our findings show that nematode communities are sensitive indicators of soil quality and that molecular profiling of nematode communities has the potential to reveal the effects of soil management on soil quality
    corecore