21 research outputs found

    Unconventional critical activated scaling of two-dimensional quantum spin-glasses

    Get PDF
    We study the critical behavior of two-dimensional short-range quantum spin glasses by numerical simulations. Using a parallel tempering algorithm, we calculate the Binder cumulant for the Ising spin glass in a transverse magnetic field with two different short-range bond distributions, the bimodal and the Gaussian ones. Through an exhaustive finite-size scaling analysis, we show that the universality class does not depend on the exact form of the bond distribution but, most important, that the quantum critical behavior is governed by an infinite randomness fixed point.Comment: 6 pages, 6 figure

    Adsorption preference reversal phenomenon from multisite-occupancy theory fortwo-dimensional lattices

    Get PDF
    The statistical thermodynamics of polyatomic species mixtures adsorbed on two-dimensional substrates was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the coverage and temperature dependence of the Helmholtz free energy and chemical potential are given. The formalism leads to the exact statistical thermodynamics of binary mixtures adsorbed in one dimension, provides a close approximation for two-dimensional systems accounting multisite occupancy and allows to discuss the dimensionality and lattice structure effects on the known phenomenon of adsorption preference reversal.Comment: 13 pages, 4 figure

    Critical behavior of long straight rigid rods on two-dimensional lattices: Theory and Monte Carlo simulations

    Full text link
    The critical behavior of long straight rigid rods of length kk (kk-mers) on square and triangular lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of parallel kk-mers, was found. This ordered phase is separated from the isotropic state by a continuous transition occurring at a intermediate density θc\theta_c. Two analytical techniques were combined with Monte Carlo simulations to predict the dependence of θc\theta_c on kk, being θc(k)k1\theta_c(k) \propto k^{-1}. The first involves simple geometrical arguments, while the second is based on entropy considerations. Our analysis allowed us also to determine the minimum value of kk (kmin=7k_{min}=7), which allows the formation of a nematic phase on a triangular lattice.Comment: 23 pages, 5 figures, to appear in The Journal of Chemical Physic

    Quasi-chemical approximation for polyatomic mixtures

    Full text link
    The statistical thermodynamics of binary mixtures of polyatomic species was developed on a generalization in the spirit of the lattice-gas model and the quasi-chemical approximation (QCA). The new theoretical framework is obtained by combining: (i) the exact analytical expression for the partition function of non-interacting mixtures of linear kk-mers and ll-mers (species occupying kk sites and ll sites, respectively) adsorbed in one dimension, and its extension to higher dimensions; and (ii) a generalization of the classical QCA for multicomponent adsorbates and multisite-occupancy adsorption. The process is analyzed through the partial adsorption isotherms corresponding to both species of the mixture. Comparisons with analytical data from Bragg-Williams approximation (BWA) and Monte Carlo simulations are performed in order to test the validity of the theoretical model. Even though a good fitting is obtained from BWA, it is found that QCA provides a more accurate description of the phenomenon of adsorption of interacting polyatomic mixtures.Comment: 27 pages, 8 figure

    PyMembrane: A flexible framework for efficient simulations of elastic and liquid membranes

    Full text link
    PyMembrane is a software package for simulating liquid and elastic membranes using a discretisation of the continuum description based on unstructured triangulated two-dimensional meshes embedded in three-dimensional space. The package is written in C++, with a flexible and intuitive Python interface, allowing for a quick setup, execution and analysis of complex simulations. PyMembrane follows modern software engineering principles and features a modular design that allows for straightforward implementation of custom extensions while ensuring consistency and enabling inexpensive maintenance. A hallmark feature of this design is the use of a standardized C++ interface which streamlines adding new functionalities. Furthermore, PyMembrane uses data structures optimised for unstructured meshes, ensuring efficient mesh operations and force calculations. By providing several templates for typical simulations supplemented by extensive documentation, the users can seamlessly set up and run research-level simulations and extend the package to integrate additional features, underscoring PyMembrane's commitment to user-centric design.Comment: 7 Figure

    Entropy-driven phase transition in a system of long rods on a square lattice

    Full text link
    The isotropic-nematic (I-N) phase transition in a system of long straight rigid rods of length k on square lattices is studied by combining Monte Carlo simulations and theoretical analysis. The process is analyzed by comparing the configurational entropy of the system with the corresponding to a fully aligned system, whose calculation reduces to the 1D case. The results obtained (1) allow to estimate the minimum value of k which leads to the formation of a nematic phase and provide an interesting interpretation of this critical value; (2) provide numerical evidence on the existence of a second phase transition (from a nematic to a non-nematic state) occurring at density close to 1 and (3) allow to test the predictions of the main theoretical models developed to treat the polymers adsorption problem.Comment: 14 pages, 6 figures. Accepted for publication in JSTA

    Determination of the Critical Exponents for the Isotropic-Nematic Phase Transition in a System of Long Rods on Two-dimensional Lattices: Universality of the Transition

    Full text link
    Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior and universality for the isotropic-nematic phase transition in a system of long straight rigid rods of length kk (kk-mers) on two-dimensional lattices. The nematic phase, characterized by a big domain of parallel kk-mers, is separated from the isotropic state by a continuous transition occurring at a finite density. The determination of the critical exponents, along with the behavior of Binder cumulants, indicate that the transition belongs to the 2D Ising universality class for square lattices and the three-state Potts universality class for triangular lattices.Comment: 7 pages, 8 figures, uses epl2.cls, to appear in Europhysics Letter

    Cell division and death inhibit glassy behaviour of confluent tissues

    Get PDF
    We investigate the effects of cell division and apopotosis on collective dynamics in two-dimensional epithelial tissues. Our model includes three key ingredients observed across many epithelia, namely cell-cell adhesion, cell death and a cell division process that depends on the surrounding environment. We show a rich non-equilibrium phase diagram depending on the ratio of cell death to cell division and on the adhesion strength. For large apopotosis rates, cells die out and the tissue disintegrates. As the death rate decreases, however, we show, consecutively, the existence of a gas-like phase, a gel-like phase, and a dense confluent (tissue) phase. Most striking is the observation that the tissue is self-melting through its own internal activity, ruling out the existence of any glassy phase.Comment: 9 pages, 10 figure

    Jamming and percolation in random sequential adsorption of straight rigid rods on a two-dimensional triangular lattice

    Get PDF
    Monte Carlo simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of linear kk-mers (also known as rods or needles) on the two-dimensional triangular lattice, considering an isotropic RSA process on a lattice of linear dimension LL and periodic boundary conditions. Extensive numerical work has been done to extend previous studies to larger system sizes and longer kk-mers, which enables the confirmation of a nonmonotonic size dependence of the percolation threshold and the estimation of a maximum value of kk from which percolation would no longer occurs. Finally, a complete analysis of critical exponents and universality have been done, showing that the percolation phase transition involved in the system is not affected, having the same universality class of the ordinary random percolation.Comment: 6 figure
    corecore