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We study the critical behavior of two-dimensional short-range quantum spin glasses by numerical simulations.

Using a parallel tempering algorithm, we calculate the Binder cumulant for the Ising spin glass in a transverse

magnetic field with two different short-range bond distributions, the bimodal and the Gaussian ones. Through an

exhaustive finite-size analysis, we show that the cumulant probably follows an unconventional activated scaling,

which we interpret as new evidence supporting the hypothesis that the quantum critical behavior is governed by

an infinite randomness fixed point.
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Quantum phase transitions in condensed matter have been

a subject of special interest though many decades [1]. This

phenomenon manifests itself in systems where quantum in-

stead of thermal fluctuations are relevant. An order-disorder

phase transition can occur even at zero temperature, if a suit-

able parameter (a magnetic field, for example) is tuned exter-

nally through the critical region. Simple models, e. g. the pure

Ising ferromagnet chain in a transverse field, have been used

as prototypes for testing our understanding in the vicinity of

such critical points [2]. More interesting still is the criticality

found in disordered systems. It has been established that the

quantum phase transition in diluted and random Ising models

in a transverse field, is controlled by the so-called infinite ran-

domness fixed point (IRFP) [3] which, among other things,

is characterized by a divergent dynamical exponent z and an

unconventional dynamic scaling [2, 4, 5].

The critical behavior of the quantum disordered and frus-

trated systems, however, is very poorly understood [1]. Spin

glasses are the paradigmatic models of such theoretical chal-

lenge and, presumably, their phase transitions should govern

by the IRFP [6]. Although recent theoretical works [7–9] sup-

port this conjecture, old Monte Carlo studies concluded that

for two [10] and three [11] dimensions, the quantum phase

transition of such systems is instead conventional (with z takes

a finite value). Subsequent simulation research has explored

this same problem concluding that in two dimensions and at

the critical point, several observables (different versions of the

Binder cumulant and the correlation length) do not follow a

conventional dynamic scaling [12]. Such disagreements are

still an open question, which often is circumvented in favor

of the IRFP scenario by noting that small system sizes were

used in these numerical works. Being that the simulations of

disordered and highly frustrated systems as spin glasses in-

evitably suffer from this drawback, at first sight this obstacle

seems impossible to overcome without the use of an alterna-

tive strategy.

In this paper, we use a quantum parallel-tempering Monte

Carlo algorithm to simulate the two-dimensional Ising spin

glass model in a transverse magnetic field. Through an ex-

haustive finite-size scaling analysis of the Binder cumulants,

we present new evidence for the existence of an IRFP in this

system.

The Hamiltonian of the two-dimensional Ising spin-glass

model in a transverse magnetic field is

H =− ∑
〈i, j〉

Ji jσ
z
i σ z

j −Γ
N

∑
i=1

σ x
i , (1)

where the first sum runs over the pairs of nearest-neighbor

sites of a square lattice of linear size L (with N = L2 spins),

σi are Pauli spin matrices, Γ is the strength of the transverse

field, and the interactions Ji j are independent random vari-

ables drawn from a given distribution with mean zero and

variance one. We consider both, the bimodal (±1) and the

Gaussian bond distributions.

To perform a Monte Carlo simulation, first we use the

Suzuki-Trotter formalism [13] to map the d-dimensional

quantum model onto an effective (d + 1)-dimensional clas-

sical one, whose action is [10]

A =−
Lτ

∑
τ=1

∑
〈i, j〉

Ki jSi(τ)S j(τ)−K
Lτ

∑
τ=1

N

∑
i=1

Si(τ)Si(τ +1), (2)

where Ki j = ∆τJi j and K = 1
2

ln[coth(∆τΓ)], Si =±1 are clas-

sical Ising spins, and the index i ( j) run over the sites of the

original square lattice. Here τ represent the imaginary time

or Trotter-dimension, which we divide into Lτ slices of width

∆τ = 1/T Lτ , with T being the temperature. To strictly repro-

duce the ground state of the quantum Hamiltonian Eq. (1), we

need take ∆τ → 0. However, as it has been argued elsewhere

[10, 11], the universal properties of the phase transition should

not depend on the short-length-scale details of the model, and

therefore we can take ∆τ = 1 without any loss of generality.

Then, by setting the standard deviation of Ki j equal to K, the

Hamiltonian of the (d +1)-dimensional system is written as

Hcl =−
Lτ

∑
τ=1

∑
〈i, j〉

Ji jSi(τ)S j(τ)−
Lτ

∑
τ=1

N

∑
i=1

Si(τ)Si(τ +1), (3)

with K−1 acting as an effective temperature for the classical

model. Thus, the statistical weight of each spin configuration

is proportional to exp(−KHcl).
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We simulate the classical model (3) using a Monte Carlo

parallel-tempering algorithm [14], with 12 replicas of the sys-

tem set at temperatures between K−1
i = 3.3 and K−1

f = 3.6

(K−1
i = 3.2 and K−1

f = 3.4) for the bimodal (Gaussian) case.

The calculations were carried out for cubic lattices of size

L× L× Lτ with fully periodic boundary conditions, and the

largest system reached was 20×20×96 for which 104 Monte

Carlo sweeps were necessary to achieve equilibrium. All

quantities were averaged over 6×103 different disorder sam-

ples. In particular, for the Gaussian case, it was necessary to

simulate a set of systems of larger sizes up to 24×24×96.

We focus on the Binder cumulant [15]

gav =
1

2

[

3−

〈

q4
〉

〈q2〉2

]

av

, (4)

where 〈· · ·〉 and [· · ·]av denote thermal and disorder aver-

ages, respectively. q is the Edward-Anderson order parameter

which is defined by the overlap between the configurations of

two replicas of the system, α and β , with the same disorder,

q =
1

L2Lτ
∑
i,τ

Sα
i (τ) S

β
j (τ). (5)

If the dynamical exponent z is finite, the Binder cumulant (4)

is expected to obey the conventional finite-size scaling form

gav = g̃c

(

δL1/ν ,Lτ/Lz
)

. (6)

Here δ = K/Kc − 1, with K−1
c being the critical temperature,

is the distance from the critical point, and ν is the exponent for

the average correlation length [5]. On the other hand, within

an IRFP scenario, the cumulant should follow an unconven-

tional finite-size scaling

gav = g̃u

(

δL1/ν , lnLτ/Lψ
)

, (7)

where ψ is called the activated exponent [4]. To determine

which of these scaling relationships is the correct one, we

need to perform a comprehensive study of the Monte Carlo

data.

First of all, we calculate the critical temperature following

the lines of Refs.[10, 11]. Because the Binder cumulant van-

ishes for a disordered phase, it is expected that when L → ∞
for fixed Lτ , as well as when Lτ → ∞ for fixed L, gav → 0. The

reason is simple: In the first limit the model tends to a clas-

sical two-dimensional spin glass, while in the second limit it

turns into an effective one-dimensional ferromagnetic chain,

both systems having a disordered phase at any finite tempera-

ture. In between these extremes the Binder cumulant reaches a

maximum, making evident the existence of an ordered phase.

Besides, both scaling relations (6) and (7) predict that at the

critical temperature (δ = 0) and if a suitable relation between

L and Lτ is imposed (since the system is very anisotropic), this

maximum does not depend on L.

This last observation suggests a simple way to determine

K−1
c . Figures 1 (a)-(c) show, for bimodal interactions, the
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FIG. 1. (a)-(c) Show the Binder cumulant for the bimodal case, as

function of Lτ for different lattice sizes L and three temperatures as

indicated. (d) Shows for both, the bimodal and the Gaussian cases,

the slope of the straight line that intersects the maxima of the Binder

ratio, gmax
av , against K−1.

Binder cumulant as a function of Lτ for different lattice sizes

L and, respectively, for temperatures K−1 < K−1
c , K−1 ≈ K−1

c ,

and K−1 > K−1
c . In each cases, the maximum values of the

Binder ratio, gmax
av , describes approximately a straight line

whose slope vanishes at the critical point. Then, by plot-

ting this slope against K−1, Fig. 1 (d), we can calculate a

very accurate value for the critical temperatures. We ob-

tain K−1
c = 3.49(1) for the bimodal case. To our knowl-

edge this critical temperature had not been previously calcu-

lated. On the other hand, for the Gaussian case we obtain

K−1
c = 3.32(3), a value very close to that reported by Rieger

and Young, K−1
c = 3.275(25) [10].

Having found the critical points we carry out, for each

system, new simulations at exactly the corresponding criti-

cal temperatures [the curves at K−1
c look like that displayed

in Fig. 1 (b)]. Then, the data set obtained is analyzed in the

light of the scaling relations (6) and (7). A simple way to de-

cide which of these two functions is the right one, consist in

plotting Lτ versus L for constant gav. According to Eq. (6),

at the critical point (δ = 0) these lengths should be related as

Lτ ∼ Lz. In the bimodal case Fig. 2 (a) shows that, for the

maximum (gmax
av ≈ 0.28), this scaling is met very well with

z ≈ 1.36. However, for the Gaussian case, although we ob-

serve a similar behavior the exponent obtained is z ≈ 1.5, a

little different but compatible with the value previously calcu-

lated in Ref. [10]. On the other hand, according to Eq. (7),

the true relation between Lτ and L should be ln(Lτ) ∼ Lψ .

Figure 2 (b) seems to indicate that, for the maximum of the
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FIG. 2. The dependence of (a) Lτ and (b) ln(Lτ ) with L, for different

values of gav as indicated. Curves are plotted in a log-log scale.

Binder ratio, this functionality is probably only fulfilled for

large lattice sizes with an exponent ψ ≈ 0.45. Also, for Gaus-

sian interactions, we observe a similar trend with ψ ≈ 0.46.

For other values of gav, Fig. 2 (a) shows that the conven-

tional scaling fails because different values of z should be con-

sidered to fit the data well. Here, gav = 0.23− (gav = 0.23+)

correspond to points with gav = 0.23 but that lies to the left

(right) of the maximum. This drawback does not occur for the

unconventional scaling [see Fig. 2 (b)], since a single value

of ψ is sufficient to describe approximately the data range.

The same is observed for the Gaussian case and also using

ψ ≈ 0.46. In this context we see that the hypothesis, assumed

by us above, that the universality class does not depend on the

exact form of the bond distribution, is valid only if the uncon-

ventional scaling is the correct one.

A more comprehensive study can be done by performing
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FIG. 3. I(z∗) (solid symbols) and I(ψ∗) (open symbols) for different

Lτ,i as indicated, for (a) the bimodal and (b) the Gaussian systems

at the critical point. The insets show how ψ∗
min depends on Lτ,i (see

text).

a data collapse analysis, thereby determining the best candi-

date values for the critical exponents z and ψ . Specifically,

to test the scaling relation (6) at the critical point, we plot

the Binder cumulant for all lattice sizes as function of Lτ/Lz∗

and, for different values of z∗, we calculate a suitable func-

tion I(z∗) in order to measure the goodness of the collapse.

We choose I(z∗) equal to the normalized sum of the areas be-

tween all pairs of curves that are contiguous in L, i.e., those for

which the difference between the corresponding lattice sizes

is the smallest (namely, L = 6 with L = 8, L = 8 with L = 12,

etc). Then, the best candidate value for z, z∗min, is obtained by

minimizing this special function. Furthermore, to analyze the
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unconventional scaling we proceed in the same way, but now

we plot the Binder cumulant as a function of ln(Lτ)/Lψ∗
, and

then we minimize I(ψ∗) to calculate ψ∗
min. The details of this

procedure are given in the Supplemental Material [16].

For the bimodal case, Fig. 3 (a) shows what happens when

we calculate the function I using all data available. That is,

by doing the calculations taking into account systems with

6 ≤ L ≤ 20 and 2 ≤ Lτ ≤ 96. These curves are labeled with

Lτ ,i = 2, the smallest value of Lτ in the set. From the con-

ventional scaling (solid black squares) we obtain a minimum

at z∗min ≈ 1.21, while for the unconventional one (open black

squares) this extreme is located at ψ∗
min ≈ 0.71, the former be-

ing the deepest. A direct interpretation of this result tells us

that the best data collapse is achieved within the conventional

framework. However, this is a hasty conclusion.

By simple inspection of the procedure used, it is easy to see

that the Binder cumulants of systems with the smaller sizes

dominate such calculations. Then, to overcome finite-size ef-

fects, we calculate again the function I but now gradually re-

moving such small lattices starting from low to high values

of Lτ ,i, i.e., considering only systems with 6 ≤ L ≤ 20 and

Lτ ,i ≤ Lτ ≤ 96. Figure 3 (a) shows also the curves for Lτ ,i = 4,

6, and 10. From these plots arise two important observations:

The minimum of I for the unconventional scaling is always

the deepest and, more important, ψ∗
min converges quickly to

ψ = 0.46(1) [see inset in Fig. 3 (a)] while z∗min changes con-

tinuously without apparently reaching a limit value (at least

for Lτ ,i = 10, z∗min ≈ 1.7).

For Gaussian interactions the finite-size effects are larger.

To overcome this problem, we simulate systems of dimen-

sions up to 24×24×96 increasing our data set to 6 ≤ L ≤ 24

and 2 ≤ Lτ ≤ 96. Figure 3 (b) shows the functions I(z∗) and

I(ψ∗) for Lτ ,i = 2− 10. The data show the same trend ob-

served for the bimodal case, but now the convergence is much

slower: ψ∗
min converges to ψ = 0.44(3), while z∗min does not

tend to a definite limit. Nevertheless, z∗min ≈ 1.55 for Lτ ,i = 10.

These results suggest again that, for the range of system

sizes studied here, the unconventional scaling is the most ap-

propriate to achieve a consistent data collapse of the Binder

cumulants.

Finally, Figs. 4 (a) and 4(b) show, respectively, the uncon-

ventional data collapse of the Binder cumulants at the critical

point for the bimodal and the Gaussian systems, where we

have used the above calculated values of ψ . For each case in-

set also shows the (best) conventional data collapse. At first

sight we observe that, in contradiction with our previous find-

ings, the latter looks like the most adequate scaling because

the corresponding curves overlap nicely, while the points to

the left of the peak for the unconventional one does not col-

lapse completely well. Notice, however, that these points cor-

respond to the smaller values of Lτ discarded in our calcula-

tions in order to overcome finite-size effects. This shows that

a “qualitative” analysis looking for good data collapses, is not

enough to replace the “quantitative” and systematic procedure

presented in this work.

In summary, we have carried out an exhaustive scaling anal-
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FIG. 4. (Color online) The unconventional data collapse of the

Binder cumulants for (a) the bimodal and (b) the Gaussian systems.

The insets show the respective conventional data collapses.

ysis of the Binder cumulant for a two-dimensional quantum

spin glass in a transverse magnetic field with both, bimodal

and Gaussian interactions. We determine that, at the criti-

cal point, the most probable scenario is that such a data set

follows an unconventional finite-size scaling (7) with an acti-

vated exponent ψ ≃ 0.44−0.46. These values are compatible

with ψ = 0.48(2) obtained by a strong disorder renormaliza-

tion group method [7], but are very different from ψ ≃ 0.65

calculated recently by block renormalization [9]. In addition,

from the derivate of gav with respect to K at the critical point,

we have also calculated ν = 1.2(4) (bimodal) and ν = 1.13(5)



5

(Gaussian), the exponents for the average correlation length.

These values agree very well with those obtained previously:

ν = 1.24(2) [7], ν = 1.21(9) [8], and ν ≃ 1.25 [9].

In conclusion, our findings support the hypothesis that the

critical behavior of this two-dimensional quantum spin glass

model is controlled by an IRFP, a result contrary to the stan-

dard picture reported in Ref. [10], probably the only available

simulation study of such a system.
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Supplementary Material for:

Numerical evidence for an unconventional critical behavior in two-dimensional quantum

spin-glasses

D. A. Matoz-Fernandez and F. Romá

The data collapse analysis is explained taking as an exam-

ple the bimodal case and, in particular, the unconventional

scaling. Figure 5 shows the logarithm of the Binder cumu-

lants, fL = log(gav), as function of x = log(Lτ). The Monte

Carlo data is represented by open points for lattices with

6 ≤ L ≤ 20 and 2 ≤ Lτ ≤ 96.

In order to analyze this data set, first we fit each curve with

a fourth-order polynomial

fL(x) = AL +BL x+CL x2 +DL x3 +EL x4, (8)

where the coefficients AL −EL depend on L. Continuous lines

in Fig. 5 correspond to such fits. From now on, we work ex-

clusively with these continuous functions. To try an uncon-

ventional data collapse for the exponent ψ∗, we need to plot

fL as function of

y = log[ln(Lτ)/Lψ∗
] = log(x)− log[log(e)]−ψ∗ log(L), (9)

where e is the Euler number. Function fL(y) is given by the

polynomial (8) replacing x by x = 10yLψ∗
log(e). Figure 6

shows an example for two lattice sizes, L = 6 and 8, and for

ψ∗ = 1.5. For each curve, variable y range between

yL,i = log[log(Lτ ,i)]− log[log(e)]−ψ∗ log(L) (10)

and

yL, f = log[log(Lτ , f )]− log[log(e)]−ψ∗ log(L), (11)

with Lτ ,i = 2 (the smallest value of Lτ ) and Lτ , f = 96 (the

largest value of Lτ ) for the full data set. Because the extremes

(10) and (11) depend on ψ∗, for a given value of this exponent

the coincidence range of a pair of curves of sizes La and Lb is

limited to

ymin = max{yLa,i,yLb,i} (12)

and

ymax = min{yLa, f ,yLb, f }, (13)

being ∆y = ymax − ymin (see Fig. 6).

To quantify how good is a given exponent value, we calcu-

late the following integral

Ia,b =
1

∆y

∫ ymax

ymin

∣

∣

∣
fLa − fLb

∣

∣

∣
dy. (14)

This is a function of ψ∗ which measures the area difference

between the curves and it is normalized by ∆y. The normal-

ization is chosen so as to allow for comparison between the
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FIG. 5. (Color online) The logarithm of the Binder cumulant versus

the logarithm of Lτ , for the bimodal case and for different lattice

sizes L as indicated. Open points correspond to simulation results

while continuous lines are fits made with a fourth-order polynomial.

results derived from the unconventional and the conventional

data collapses. Finally, in order to calculate I, we average Ia,b

over all pairs of curves with sizes (La,Lb) that are contiguous

in L [namely, (6,8), (8,12), (12,16), and (16,20)]

I =
1

P
∑

pares

Ia,b , (15)

where P = 4 is the total number of pairs.

On the other hand, to make a conventional data collapse for

the exponent z∗, we proceed in a similar way. Namely, we plot

fL as function of

y = log(Lτ/Lz∗) = x− z∗ log(L), (16)

where now fL(y) is given by the polynomial (8) replacing x by

x = y+ z∗ log(L), and for each curve we calculate the range of
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FIG. 6. (Color online) Unconventional data plot of fL versus y, for

lattice sizes L = 6 (continuous black line) and L = 8 (dashed red line)

and for ψ∗ = 1.5. The area between both curves (green pattern) is

limited to a coincidence range of width ∆y.

variable y, from

yL,i = log(Lτ ,i)− z∗ log(L) (17)

to

yL, f = log(Lτ , f )− z∗ log(L). (18)

The rest of the procedure is essentially the same as before.

In addition, for both the conventional and the unconven-

tional scalings, we have tried other forms for function I and

also we have made fits to higher-order polynomials, but our

findings do not change appreciably.


