We study the critical behavior of two-dimensional short-range quantum spin
glasses by numerical simulations. Using a parallel tempering algorithm, we
calculate the Binder cumulant for the Ising spin glass in a transverse magnetic
field with two different short-range bond distributions, the bimodal and the
Gaussian ones. Through an exhaustive finite-size scaling analysis, we show that
the universality class does not depend on the exact form of the bond
distribution but, most important, that the quantum critical behavior is
governed by an infinite randomness fixed point.Comment: 6 pages, 6 figure