1,619 research outputs found

    Ozone vertical profile changes over South Pole

    Get PDF
    Important changes in the ozone vertical profile over South Pole, Antarctica have occurred both during the recent period of measurements, 1986-1991, and since an earlier set of soundings was carried out from 1967-1971. From the onset of the 'ozone hole' over Antarctica in the early 1980s, there has been a tendency for years with lower spring ozone amounts to alternate with years with somewhat higher (although still depleted) ozone amounts. Beginning in 1989 there have been three consecutive years of strong depletion although the timing of the breakdown of the vortex has varied from year to year. Comparison of the vertical profiles between the two periods of study reveals the dramatic decreases in the ozone amounts in the stratosphere between 15-21 km during the spring. In addition, it appears that summer values are also now much lower in this altitude region

    The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1982-1990

    Get PDF
    Electrochemical concentration cell (ECC) ozone-sonde observations, made in recent years at ten stations whose locations range from the Arctic to Antarctica, have yielded a self-consistent ozone data base from which mean seasonal and annual latitudinal ozone vertical distributions to 35 km have been derived. Ozone measurement uncertainties are estimated, and results are presented in the Bass-Paur (1985) ozone absorption coefficient scale adopted for use with Dobson ozone spectrophotometers January 1, 1992. The data should be useful for comparison with model calculations of the global distribution of atmospheric ozone, for serving as apriori statistical information in deriving ozone vertical distributions from satellite and Umkehr observations, and for improving the satellite and Umkehr ozone inversion algorithms. Attention is drawn to similar results based on a less comprehensive data set published in Ozone in the Atmosphere, Proceedings of the 1988 Quadrennial Ozone Symposium where errors in data tabulations occurred for three of the stations due to inadvertent transposition of ozone partial pressure and air temperature values

    Exact results on spin dynamics and multiple quantum dynamics in alternating spin-1/2 chains with XY-Hamiltonian at high temperatures

    Full text link
    We extend the picture of a transfer of nuclear spin-1/2 polarization along a homogeneous one-dimensional chain with the XY-Hamiltonian to the inhomogeneous chain with alternating nearest neighbour couplings and alternating Larmor frequencies. To this end, we calculate exactly the spectrum of the spin-1/2 XY-Hamiltonian of the alternating chain with an odd number of sites. The exact spectrum of the XY-Hamiltonian is also applied to study the multiple quantum (MQ) NMR dynamics of the alternating spin-1/2 chain. MQ NMR spectra are shown to have the MQ coherences of zero and ±\pm second orders just as in the case of a homogeneous chain. The intensities of the MQ coherences are calculated.Comment: 10 pages, 4 figure

    Perfect-fluid cylinders and walls - sources for the Levi-Civita space-time

    Get PDF
    The diagonal metric tensor whose components are functions of one spatial coordinate is considered. Einstein's field equations for a perfect-fluid source are reduced to quadratures once a generating function, equal to the product of two of the metric components, is chosen. The solutions are either static fluid cylinders or walls depending on whether or not one of the spatial coordinates is periodic. Cylinder and wall sources are generated and matched to the vacuum (Levi--Civita) space--time. A match to a cylinder source is achieved for -\frac{1}{2}<\si<\frac{1}{2}, where \si is the mass per unit length in the Newtonian limit \si\to 0, and a match to a wall source is possible for |\si|>\frac{1}{2}, this case being without a Newtonian limit; the positive (negative) values of \si correspond to a positive (negative) fluid density. The range of \si for which a source has previously been matched to the Levi--Civita metric is 0\leq\si<\frac{1}{2} for a cylinder source.Comment: 22 pages, LaTeX, one included figure. Revised version: three (non-perfect-fluid) interior solutions are added, one of which falsifies the original conjecture in Sec. 4, and the circular geodesics of the Levi-Civita space-time are discussed in a footnot

    On parameters of the Levi-Civita solution

    Get PDF
    The Levi-Civita (LC) solution is matched to a cylindrical shell of an anisotropic fluid. The fluid satisfies the energy conditions when the mass parameter σ\sigma is in the range 0σ10 \le \sigma \le 1. The mass per unit length of the shell is given explicitly in terms of σ\sigma, which has a finite maximum. The relevance of the results to the non-existence of horizons in the LC solution and to gauge cosmic strings is pointed out.Comment: Latex, no figure

    Algorithm engineering for optimal alignment of protein structure distance matrices

    Get PDF
    Protein structural alignment is an important problem in computational biology. In this paper, we present first successes on provably optimal pairwise alignment of protein inter-residue distance matrices, using the popular Dali scoring function. We introduce the structural alignment problem formally, which enables us to express a variety of scoring functions used in previous work as special cases in a unified framework. Further, we propose the first mathematical model for computing optimal structural alignments based on dense inter-residue distance matrices. We therefore reformulate the problem as a special graph problem and give a tight integer linear programming model. We then present algorithm engineering techniques to handle the huge integer linear programs of real-life distance matrix alignment problems. Applying these techniques, we can compute provably optimal Dali alignments for the very first time

    Microwave Gaseous Discharges

    Get PDF
    Contains reports on three research projects

    Elastic turbulence in curvilinear flows of polymer solutions

    Full text link
    Following our first report (A. Groisman and V. Steinberg, \sl Nature 405\bf 405, 53 (2000)) we present an extended account of experimental observations of elasticity induced turbulence in three different systems: a swirling flow between two plates, a Couette-Taylor (CT) flow between two cylinders, and a flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of width of the region available for flow to radius of curvature of the streamlines. The experiments were carried out with dilute solutions of high molecular weight polyacrylamide in concentrated sugar syrups. High polymer relaxation time and solution viscosity ensured prevalence of non-linear elastic effects over inertial non-linearity, and development of purely elastic instabilities at low Reynolds number (Re) in all three flows. Above the elastic instability threshold, flows in all three systems exhibit features of developed turbulence. Those include: (i)randomly fluctuating fluid motion excited in a broad range of spatial and temporal scales; (ii) significant increase in the rates of momentum and mass transfer (compared to those expected for a steady flow with a smooth velocity profile). Phenomenology, driving mechanisms, and parameter dependence of the elastic turbulence are compared with those of the conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure

    Universality in fully developed turbulence

    Get PDF
    We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70, 3251 (1993)] of highly turbulent flow with 1515 \le Taylor-Reynolds number Reλ200Re_\lambda\le 200 up to Reλ45000Re_\lambda \approx 45000, employing a reduced wave vector set method (introduced earlier) to approximately solve the Navier-Stokes equation. First, also for these extremely high Reynolds numbers ReλRe_\lambda, the energy spectra as well as the higher moments -- when scaled by the spectral intensity at the wave number kpk_p of peak dissipation -- can be described by {\it one universal} function of k/kpk/k_p for all ReλRe_\lambda. Second, the ISR scaling exponents ζm\zeta_m of this universal function are in agreement with the 1941 Kolmogorov theory (the better, the large ReλRe_\lambda is), as is the ReλRe_\lambda dependence of kpk_p. Only around kpk_p viscous damping leads to slight energy pileup in the spectra, as in the experimental data (bottleneck phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys. Rev.

    Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence

    Full text link
    By analyzing trajectories of solid hydrogen tracers, we find that the distributions of velocity in decaying quantum turbulence in superfluid 4^4He are strongly non-Gaussian with 1/v31/v^3 power-law tails. These features differ from the near-Gaussian statistics of homogenous and isotropic turbulence of classical fluids. We examine the dynamics of many events of reconnection between quantized vortices and show by simple scaling arguments that they produce the observed power-law tails.Comment: 4 pages, 4 figure
    corecore