8,001 research outputs found

    The Power Flow Angle of Acoustic Waves in Thin Piezoelectric Plates

    Get PDF
    The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A0) and quasi-symmetric (S0) Lamb waves as well as quasi-shear-horizontal (SH0) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S0 and SH0 wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers

    Peltier effect in normal metal-insulator-heavy fermion metal junctions

    Get PDF
    A theoretical study has been undertaken of the Peltier effect in normal metal - insulator - heavy fermion metal junctions. The results indicate that, at temperatures below the Kondo temperature, such junctions can be used as electronic microrefrigerators to cool the normal metal electrode and are several times more efficient in cooling than the normal metal - heavy fermion metal junctions.Comment: 3 pages in REVTeX, 2 figures, to be published in Appl. Phys. Lett., April 7, 200

    Pairing state in multicomponent superconductors

    Full text link
    We use the microscopic weak coupling theory to predict the pairing state in superconductors of cubic, hexagonal, or tetragonal symmetry, where the order parameter is multicomponent, i.e., transforms according to either a 2-dimensional or a 3-dimensional representation of the crystal point group. We show that the superconducting phase usually breaks the time-reversal symmetry for singlet multicomponent superconductors. The superconducting order parameter for triplet superconductors in most cases turns out to be non-magnetic.Comment: 7 page

    Sensitivity to amplitude envelope rise time in infancy and vocabulary development at 3 years: A significant relationship.

    Get PDF
    Here we report, for the first time, a relationship between sensitivity to amplitude envelope rise time in infants and their later vocabulary development. Recent research in auditory neuroscience has revealed that amplitude envelope rise time plays a mechanistic role in speech encoding. Accordingly, individual differences in infant discrimination of amplitude envelope rise times could be expected to relate to individual differences in language acquisition. A group of 50 infants taking part in a longitudinal study contributed rise time discrimination thresholds when aged 7 and 10 months, and their vocabulary development was measured at 3 years. Experimental measures of phonological sensitivity were also administered at 3 years. Linear mixed effect models taking rise time sensitivity as the dependent variable, and controlling for non-verbal IQ, showed significant predictive effects for vocabulary at 3 years, but not for the phonological sensitivity measures. The significant longitudinal relationship between amplitude envelope rise time discrimination and vocabulary development suggests that early rise time discrimination abilities have an impact on speech processing by infants.Australian Research Counci

    Products of chemical reactions that occur during high-temperature heat treatment of the meat products

    Get PDF
    Recently the actively active studies have begun devoted to the accumulation of «harmful» substances in food products, which are supposedly accumulated in the body of a person who often consumes these products. Meat, as a source of full-featured animal protein, is especially popular in this aspect. For the preparation of meat products various types of heat treatment are used, almost each of which will inevitably lead to the destruction of some of the chemical compounds originally present in the product, and the formation of completely new chemical compounds, which can often be harmful to the human body. During high-temperature heat treatment (mainly frying), some chemical reactions in meat products occur, which lead to the formation of heterocyclic aromatic amines (HAA) in it. Due to the great variety of raw meat and cooking recipes, during the heat treatment HAA’s of various classes are formed, each of them will be peculiar for the particular type of raw material or recipe components (with the exception of MeIQx and PhIP, which always form during frying). The more complete understanding of the HAA’s formation mechanism will help study the products of Maillard reactions and Strecker degradation. In this work we studied the formation of HAA’s as a result of the cyclization of creatine and the detaching of water (dehydration) from it during temperature exposure. The classification of the compounds formed as a result of these reactions is presented and the main classes of the HAA obtained in result are considered. The questions of the influence of various factors on amount of HAA formed, such as the fat content, the introduction of Fe2+, Fe3+, are raised. In the future it is necessary to conduct studies of the quantitative content of HAA in meat products to complement the already actively ongoing work on the study of xenobiotics consumed by humans with food, which will give a more comprehensive picture of the carcinogens content in food products

    Comparative Analysis of the Electronic Energy Structure of Nanocrystalline Polymorphs of Y2O3 Thin Layers: Theory and Experiments

    Full text link
    The results of fabrication and characterization of atomic structure of nanocrystalline thin layers of Y2O3 in cubic and monoclinic phases is reported. Experimental data demonstrate crystalline ordering in nanocrystalline films with average grain size of ~10-14 nm both for cubic and monoclinic studied structures. Density Functional Theory (DFT) based simulations demonstrate insignificant differences of electronic structure of these phases in the bulk and on the surfaces. Theoretical modeling also pointed out the significant broadening of valence and conductive bands caused by means of energy levels splitting in agreement with experimental data (X-ray photoelectron and photoluminescence spectra). The presence of various intrinsic and extrinsic defects (including surface adsorption of carbon mono- and dioxide) does not promote visible changes in electronic structure of Y2O3 surface for both studied phases. Optical absorption and luminescence measurements indicate insignificant bandgap reduction of Y2O3 nanocrystalline layers and the very little contribution from defect states. Simulation of extrinsic compression and expanding demonstrate stability of the electronic structure of nanocrystalline Y2O3 even under significant strain. Results of comprehensive studies demonstrate that yttrium oxide based nanocrystalline layers are prospective for various optical applications as a stable material.Comment: 24 pages, 13 figures, accepted to Applied Surface Scienc

    Uncommon 2D Diamond-like Carbon Nanodots Derived from Nanotubes: Atomic Structure, Electronic States and Photonic Properties

    Full text link
    In this article, we report the results of relatively facile fabrication of carbon nanodots from single-walled and multi-walled carbon nanotubes (SWCNT and MWCNT). The results of X-ray photoelectron spectroscopy (XPS) and Raman measurements show that the obtained carbon nanodots are quasi-two-dimensional objects with a diamond-like structure. Based on the characterization results, a theoretical model of synthesized carbon nanodots was developed. The measured absorption spectra demonstrate the similarity of the local atomic structure of carbon nanodots synthesized from single-walled and multi-walled carbon nanotubes. However, the photoluminescence (PL) spectra of nanodots synthesized from both sources turned out to be completely different. Carbon dots fabricated from MWCNTs exhibit PL spectra similar to nanoscale carbon systems with sp3 hybridization and a valuable edge contribution. At the same time nanodots synthesized from SWCNTs exhibit PL spectra which are typical for quantum dots with an estimated size of ~0.6-1.3 nm.Comment: 22 pages, 9 figures, to appear in PCC

    Examination of evidence for collinear cluster tri-partition

    Get PDF
    In a series of the experiments at different time-of-flight spectrometers of heavy ions we have observed manifestations of a new at least ternary decay channel of low excited heavy nuclei. Due to specific features of the effect, it was called collinear cluster tri-partition (CCT). The experimental results obtained initiated a number of theoretical articles dedicated to different aspects of the CCT. We compare theoretical predictions with our experimental data, only partially published so far. The model of one of the most populated CCT modes that gives rise to the so called "Ni-bump" is discussed. Detection of the 68-72Ni fission fragments with a kinetic energy E<25 MeV at the mass-separator Lohengrin is proposed for an independent experimental verification of the CCT.Comment: 16 pages, 14 figure
    corecore