1,326 research outputs found

    Comparisons of full correlation analysis (FCA) and imaging Doppler interferometry (IDI) winds using the Buckland Park MF radar

    Get PDF
    © European Geosciences Union 2004We present results from three years of mesospheric and thermospheric wind measurements obtained using full correlation analysis (FCA) and imaging Doppler interferometry (IDI) for the Buckland Park MF radar. The IDI winds show excellent agreement with the FCA winds, both for short (2-min) and longer term (hourly, fortnightly) comparisons. An extension to a commonly used statistical analysis technique is introduced to show that the IDI winds are approximately 10% larger than the FCA winds, which we attribute to an underestimation of the FCA winds rather than an indication that IDI overestimates the wind velocity. Although the distribution of IDI effective scattering positions are shown to be consistent with volume scatter predictions, the velocity comparisons contradict volume scatter predictions that the IDI velocity will be overestimated. However, reanalysis of a 14-day data set suggests the lack of overestimation is due to the radial velocity threshold used in the analysis, and that removal of this threshold produces the volume scatter predicted overestimation of the IDI velocities. The merits of using hourly IDI estimates versus hourly averaged 2-min IDI estimates are presented, suggesting that hourly estimated turbulent velocities are overestimated.D. A. Holdsworth and I. M. Rei

    The Buckland Park MF radar: routine observation scheme and velocity comparisons

    Get PDF
    This paper describes the routine observations scheme implemented for the Buckland Park medium frequency (BPMF) radar. These observations are rare among current MF/HF radar observations in that they are made using a relatively narrow transmit polar diagram. The flexibility of the radar allows a number of analyses to be performed simultaneously. The analyses described include the full correlation analysis (FCA), spatial correlation analysis (SCA), hybrid Doppler interferometry (HDI) and imaging Doppler interferometry (IDI) for observations of mesospheric dynamics and the temporal and spatial characteristics of their scatterers, the differential absorption experiment (DAE) for the estimation of electron densities and collision frequencies, and meteor analysis for estimation of meteor height, time and angle of arrival (AOA) distributions. Intercomparisons between wind velocities estimated using the FCA with SCA, HDI and IDI techniques are presented. The FCA velocities exhibit the well-known "triangle size effect" (TSE), whereby the wind velocity is underestimated at smaller antenna spacings. Although the SCA, IDI and HDI techniques were not applied concurrently, comparisons using FCA as a reference suggest these techniques produce velocities in good agreement.D. A. Holdsworth and I. M. Rei

    Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Get PDF
    Published: 12 June 2017Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.Andrew J. Spargo, Iain M. Reid, Andrew D. MacKinnon, and David A. Holdswort

    Mutations in the Arabidopsis Peroxisomal ABC Transporter COMATOSE Allow Differentiation between Multiple Functions In Planta: Insights from an Allelic Series

    Get PDF
    COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal β-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein. Mutation of conserved residues in the Walker A and B motifs in CTS nucleotide-binding domain (NBD) 1 resulted in a null phenotype but had little effect in NBD2, indicating that the NBDs are functionally distinct in vivo. Two alleles containing mutations in NBD1 outside the Walker motifs (E617K and C631Y) exhibited resistance to auxin precursors 2,4-dichlorophenoxybutyric acid (2,4-DB) and indole butyric acid (IBA) but were wild type in all other tests. The homology model predicted that the transmission interfaces are domain-swapped in CTS, and the differential effects of mutations in the conserved "EAA motif" of coupling helix 2 supported this prediction, consistent with distinct roles for each NBD. Our findings demonstrate that CTS functions can be separated by mutagenesis and the structural model provides a framework for interpretation of phenotypic data

    Tensorial Constitutive Models for Disordered Foams, Dense Emulsions, and other Soft Nonergodic Materials

    Full text link
    In recent years, the paradigm of `soft glassy matter' has been used to describe diverse nonergodic materials exhibiting strong local disorder and slow mesoscopic rearrangement. As so far formulated, however, the resulting `soft glassy rheology' (SGR) model treats the shear stress in isolation, effectively `scalarizing' the stress and strain rate tensors. Here we offer generalizations of the SGR model that combine its nontrivial aging and yield properties with a tensorial structure that can be specifically adapted, for example, to the description of fluid film assemblies or disordered foams.Comment: 18 pages, 4 figure

    Ground state and low-lying excitations of the spin-1/2 XXZ model on the kagome lattice at magnetization 1/3

    Full text link
    We study the ground state and low-lying excitations of the S=1/2 XXZ antiferromagnet on the kagome lattice at magnetization one third of the saturation. An exponential number of non-magnetic states is found below a magnetic gap. The non-magnetic excitations also have a gap above the ground state, but it is much smaller than the magnetic gap. This ground state corresponds to an ordered pattern with resonances in one third of the hexagons. The spin-spin correlation function is short ranged, but there is long-range order of valence-bond crystal type.Comment: 2 pages, 1 figure included, to appear in Physica B (proceedings of SCES'04

    A revised age, structural model and origin for the North Pennine Orefield in the Alston Block, northern England: intrusion (Whin Sill)-related base metal (Cu–Pb–Zn–F) mineralization

    Get PDF
    Mineralization and associated fluid migration events in the c. 1500 km2 North Pennine Orefield (NPO) are known to be associated with tectonic activity, but the age of these tectonic events and origins of the base metal sulfide mineralization remain unresolved. New fieldwork in the Alston Block shows that mineralization post-dates a weakly developed phase of north–south shortening consistent with far-field Variscan basin inversion during the late Carboniferous. New observations of field relationships, coupled with microstructural observations and stress inversion analyses, together with Re–Os sulfide geochronology show that the vein-hosted mineralization (apart from barium minerals) was synchronous with a phase of north–south extension and east–west shortening coeval with emplacement of the Whin Sill (c. 297–294 Ma). Thus the development of the NPO was related to an early Permian regional phase of transtensional deformation, mantle-sourced hydrothermal mineralization and magmatism in northern Britain. Previously proposed Mississippi Valley Type models, or alternatives relating mineralization to the influx of Mesozoic brines, can no longer be applied to the development of the NPO in the Alston Block. Our findings also mean that existing models for equivalent base metal sulfide fields worldwide (e.g. Zn–Pb districts of Silesia, Poland and Tennessee, USA) may need to be reassessed

    All-sky interferometric meteor radar meteoroid speed estimation using the Fresnel transform

    Get PDF
    Fresnel transform meteor speed estimation is investigated. A spectral based technique is developed allowing the transform to be applied at low temporal sampling rates. Simulations are used to compare meteoroid speeds determined using the Fresnel transform and alternative techniques, confirming that the Fresnel transform produces the most accurate meteoroid speed estimates for high effective pulse repetition frequencies (PRFs). The Fresnel transform is applied to high effective PRF data collected during Leonid meteor showers, producing speed estimates in good agreement with the theoretical pre-atmospheric speed of the 71 kms−1. Further simulations for the standard low effective PRF sampling parameters used for Buckland Park meteor radar (BPMR) observations suggests that the Fresnel transform can successfully estimate meteor speeds up to 80 kms−1. Fresnel transform speed estimation is applied using the BPMR, producing speed distributions similar to those obtained in previous studies. The technique is also applied to data collected using the BPMR sampling parameters during Southern delta-Aquarid and Geminid meteor showers, producing speeds in very good agreement with the theoretical pre-atmospheric speeds of these showers (41 kms−1 and 35 kms−1, respectively). However, application of the Fresnel transform to high speed showers suggests that the practical upper limit for accurate speed estimation using the BPMR sampling parameters is around 50 kms−1. This limit allows speed accurate estimates to be made for about 70% of known meteor showers, and around 70% of sporadic echoes.D. A. Holdsworth, W. G. Elford, R. A. Vincent, I. M. Reid, D. J. Murphy, and W. Singe
    • …
    corecore