1,500 research outputs found

    Discreteness of Conductance Change in Black Lipid Films

    Get PDF
    The mechanisms by which inorganic ions cross biological membranes are still effectively unknown. However, it has become very clear during the past few years that the proteins or other macromolecules in the membrane are much more likely to be involved in this process than are the lipids. Thus, experiments with artificial lipid membranes have revealed no indicatfon of the necessary ion transfer or ion selectivity properties among the naturally occurring lipids, whereas many small macromolecules, including some polypeptides, are known to be entirely adequate in these respects

    The impact of mutation and gene conversion on the local diversification of antigen genes in African trypanosomes

    Get PDF
    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair

    Failure of vaccination to prevent outbreaks of foot-and-mouth disease

    Get PDF
    Outbreaks of foot-and-mouth disease persist in dairy cattle herds in Saudi Arabia despite revaccination at intervals of 4-6 months. Vaccine trials provide data on antibody responses following vaccination. Using this information we developed a mathematical model of the decay of protective antibodies with which we estimated the fraction of susceptible animals at a given time after vaccination. The model describes the data well, suggesting over 95% take with an antibody half-life of 43 days. Farm records provided data on the time course of five outbreaks. We applied a 'SLIR' epidemiological model to these data, fitting a single parameter representing disease transmission rate. The analysis provides estimates of the basic reproduction number R(0), which may exceed 70 in some cases. We conclude that the critical intervaccination interval which would provide herd immunity against FMDV is unrealistically short, especially for heterologous challenge. We suggest that it may not be possible to prevent foot-and-mouth disease outbreaks on these farms using currently available vaccines

    Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission

    Get PDF
    Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer’s disease (AD)-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates

    Some Further Experiments on Bimolecular Lipid Membranes

    Full text link

    The Science and Mechanisms Behind Ionophores for Pigs and Poultry

    Get PDF

    Bright Giant Pulses from the Crab Nebula Pulsar: Statistical Properties, Pulse Broadening and Scattering due to the Nebula

    Full text link
    We report observations of Crab giant pulses made with the Australia Telescope Compact Array and a baseband recorder system, made simultaneously at two frequencies, 1300 and 1470 MHz. These observations were sensitive to pulses with amplitudes \ga 3 kJy and widths \ga 0.5 μ\mus. Our analysis led to the detection of more than 700 such bright giant pulses over 3 hours, and using this large sample we investigate their amplitude, width, arrival time and energy distributions. The brightest pulse detected in our data has a peak amplitude of \sim 45 kJy and a width of \sim 0.5 μ\mus, and therefore an inferred brightness temperature of 1035\sim 10^{35} K. The duration of giant-pulse emission is typically \sim1 μ\mus, however it can also be as long as 10 μ\mus. The pulse shape at a high time resolution (128 ns) shows rich diversity and complexity in structure and is marked by an unusually low degree of scattering. We discuss possible implications for scattering due to the nebula, and for underlying structures and electron densities.Comment: 8 pages, 8 figures, Accepted for publication in Ap

    The Impact of Mutation and Gene Conversion on the Local Diversification of Antigen Genes in African Trypanosomes

    Get PDF
    . Abstract Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair
    corecore