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Abstract

Golgi-localized y-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin
adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving
enzyme (BACE1), which is required for production of the Alzheimer’s disease (AD)-associ-
ated amyloid Bpeptide. Our previous studies have shown that BACE1 is degraded via the
lysosomal pathway and that depletion of GGAS results in increased BACET1 levels and
activity owing to impaired lysosomal trafficking and degradation. We further demonstrated
the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are
increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in nov-
elty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role

of GABAergic transmission in the regulation of anxiety-like behaviors, we performed
electrophysiological recordings in hippocampal slices and found increased phasic and
decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found
that the number of inhibitory synapses is increased in the dentate gyrus of GGAS3 null mice
in further support of the electrophysiological data. Thus, the increased GABAergic transmis-
sion is a leading candidate mechanism underlying the reduced anxiety-like behaviors
observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role
in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null
mice, it is possible that at least some of these phenotypes are a consequence of increased
processing of BACE1 substrates.
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Introduction

Golgi-localized y-ear-containing ARF binding proteins (GGAs) are monomeric clathrin adap-
tors that are recruited to the trans-Golgi network (TGN) by the Arfl-GTPase. Three GGAs
(GGAL, 2 and 3) have been identified in mammals. They consist of four distinct segments: a
VHS (VPS27, Hrs, and STAM) domain that binds the acidic di-leucine sorting signal, DXXLL;
a GAT (GGA and Tom1) domain which binds Arf:GTP and ubiquitin; a hinge region which
recruits clathrin; and a GAE (gamma-adaptin ear homology) domain which exhibits sequence
similarity to the ear region of y-adaptin and recruits a number of accessory proteins. GGAs are
necessary for the sorting of acid hydrolases to the lysosomes. Newly synthesized acid hydro-
lases modified with mannose 6-phosphate groups bind to mannose 6-phosphate receptors
(MPRs). In addition to MPRs, other cargo molecules bind to the VHS domain of GGAs via the
DXXLL motif [1]. However, several sources of evidence support a unique role for GGA3 in the
trafficking of ubiquitinated cargoes to lysosomes [2-5].

GGAs have been shown to bind the Beta-site APP-cleaving enzyme (BACE1) [6-9], a mem-
brane-tethered member of the aspartyl proteases that has been identified as B-secretase [10-
12]. The serial proteolysis of the amyloid precursor protein (APP) by B- and y-secretase [13]
results in the generation of a ~4kDa peptide termed A, the main component of senile plaques
accumulating in the brain of subjects affected by Alzheimer’s disease. Our previous studies
have shown that BACEL is degraded via the lysosomal pathway [14] and that depletion of
GGAS3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking
and degradation [15, 16]. Moreover, we found that, unexpectedly, direct binding of GGA3
VHS domain to BACE] via the di-leucine motif is not necessary for this regulation. Instead, we
demonstrated that GGA3 interaction with ubiquitin is essential for the regulation of BACE1
levels [16]. We further demonstrated the role of GGA3 in the regulation of BACEI in vivo by
showing that BACEL levels are increased in the brain of GGA3 null mice [17]. We also deter-
mined that depletion of GGA3 naturally occurs following caspase activation both in cellular
models of apoptosis and in rodent models of stroke and traumatic brain injury [15, 17]. More
importantly, we discovered that levels of GGA3 are decreased and inversely correlated with
BACE] levels in post-mortem AD brains [15].

GGA3 is highly expressed in the brain and in neurons [17, 18], however the function of
GGA3 in the brain remains to be clarified. Thus, we performed a behavioral analysis of GGA3
null mice and found that GGA3 deletion results in novelty-induced hyperactivity and decreased
anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of
anxiety-like behaviors [19], we performed electrophysiological recordings in hippocampal slices
and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells
(DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate
gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased
GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like
behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a
key role in GABAergic transmission. Since we have previously shown that BACEI levels are ele-
vated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a
consequence of increased processing of BACE1 substrates.

Materials and Methods
Animals

The generation of Gga3-/- (GGA3 KO) mouse line has been already described [17]. Briefly,
the strain was created by microinjection of E14Tg2a.4 from 129P2/OlaHsd embryonic stem
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(ES) cells generated by BayGenomics (see http://baygenomics.ucsf.edu). The gene-trap vectors
used within BayGenomics contain a splice-acceptor sequence upstream of a reporter gene, -
geo (a fusion of B-galactosidase and neomycin phosphotransferase II). These vectors insert
randomly into introns. Chimeric males were mated to C57BL/6] females (Jackson laborato-
ries) and the resulting heterozygous male was purchased. The mice used in these experiments
have been backcrossed for 10 generations in C57BL/6] genetic background. Mice were housed
under standard conditions and food and water were available ad libitum. All animal experi-
ments were carried out with the approval of Tufts University Institutional Animal Care and
Use Committees.

Behavioral Analyses

All behavioral testing was conducted in the Tufts University CNR Behavior Core Facility. A
total number of 21 GGA3KO mice (14 females, 7 males) and 28 GGA3W'T mice (17 females,
11 males) were subjected to a battery of behavioral tests at 8—10 weeks of age (denoted as
behavioral paradigm 1). In paradigm one, as per institutional guidelines to reduce unnecessary
use of animals, we tested animals on a battery of tests starting with the least invasive/stressful
and moving to more stressful tests. Of note, an inter-test interval of at least 24 hours was always
employed. Behavioral testing paradigm 1 (in order of tests performed): Open Field Testing,
Elevated-Plus-Maze, Light/Dark Exploration, Home cage monitoring, Marble Burying,
Rotarod, Contextual and Cued Fear Associated Memory. Based upon results obtained from
this battery of tests we subjected an additional n = 14 GGA3KO mice (7 females, 7 males) and
14 GGA3WT mice (7 females, 7 males) to behavioral tests to evaluate additional aspects of
working memory and spatial reference memory in these lines (denoted as behavioral paradigm
2 to clarify that these mice were not subjected to the behavioral tests in paradigm 1). Behavioral
testing paradigm 2 (in order of tests performed): Morris Water Maze. Based upon the reduced
anxiety witnessed in elevated plus maze and light/dark test we were interested in the observing
if there were any differences in learned helplessness between the genotypes so we ran the Por-
solt Forced Swim Test, however this test could not be included with the tests in paradigm 2
which already included a swim task that allowed escape. Thus, an additional cohort of n = 15
GGA3KO mice (7 females, 8 males) and 23 GGA3WT mice (11 females, 12 males) were sub-
jected to the Porsolt Forced Swim Test (this is denoted as behavioral testing paradigm 3 to indi-
cate that these mice were not tested in either of the two other batteries of behavioral tests). All
mice were acclimated to a reverse 12:12hrs light:dark cycle (behavioral testing performed dur-
ing dark hours) for 2 weeks prior to the initiation of behavioral testing in order to test during
the most active phase for the mouse. Statistical analysis of the behavioral data by two-way
ANOVA indicated no genotype x gender interaction, but a genotype effect (Table 1) as a result,
pooled sex data is presented in this manuscript.

Neuromotor and Basal Activity Tests. Circadian Activity monitoring: Mice were single
housed in transparent standard (20 x 30cm) shoe-box cages with minimal bedding and food
and water available ad libitum. Lighting was maintained on the reverse 12:12hrs light:dark
cycle and activity was recorded for 24hrs utilizing the Smart Frame™ Cage Rack System (Ham-
ilton Kinder, Poway, CA) which consists of 12 photocells (8L x 4W) to track animal movement.
Photobeam breaks were monitored and binned utilizing Motor Monitor™ software (Hamilton
Kinder, Poway, CA) to reveal data including distance travelled (cm) and rest time (sec).

Rotarod: Motor coordination and balance were measured in the mice utilizing an accelera-
tion paradigm on a 5 position Rotarod (ENV 577M, Med Associates, St Albans, VT). The day
prior to testing mice were habituated to the Rotarod with two trials (1hr apart) utilizing a slow
acceleration paradigm (2-20rpm over 5minutes). Subsequent testing was carried out 24hrs
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Table 1.
Two way ANOVA t-test
Circadian Activity Interaction Genotype Gender GGA3KO GGA3WT p-value
Monitoring (24hr) n=21 n =28
Distance moved F(1,45) = P=0.8138 F(1,45)= P=08442 F(1,45)= P =0.4033 79044 +3754 80814 +3667 n.s.
(cm) 0.05615 0.03905 0.7117
Total rest time (min)  F (1, 45) = P=0.6384 F (1,45 = P=0.4851 F(1,45)= P=0.0180 858.45+6.75 862.2+5.6 n.s.
0.2238 0.4954 6.030
Rotarod (4-40rpm Interaction Genotype Gender GGA3KO GGA3WT p-value
acceleration) n=21 n=28
Max. rpm F(1,45)= P=0.5060 F(1,45)= P=01326 F(1,45)= P=0.1114 304+1.2 32.3+0.9 n.s.
0.4495 2.346 2.637
Open Field Testing  Interaction Genotype Gender GGA3KO GGA3WT p-value
n=21 n =28
Total Path length F(1,45)= P=05097 F(1,45 = P <0.0001 F(1,45)= P =0.6194 2900 + 108 231373 p<0.0001
(cm) 0.4416 21.06 0.2502
Time in Center (sec) F(1,45)=  P=0.0784 F(1,45)= P=00980 F(1,45)= P=0.4131 4634 34+3 p = 0.0262
3.244 2.855 0.6826
Time in Periphery F(1,45) = P=0.0784 F (1,45 = P=0.0980 F (1,45)= P=04131 248+6 267 +3 p = 0.0262
(sec) 3.244 2.855 0.6826
% Path length in F(1,45)= P=02074 F (1,45 = P=0.1277 F(1,45)= P=0.9894 0.219+0.013 0.184+0.011 p=0.0518
center (cm) 1.636 2.408 0.0001789
Elevated Plus Interaction Genotype Gender GGA3KO GGA3WT p-value
Maze n=21 n =28
Total Path length F(1,45) = P=0.4916 F(1,45)= P=0.3687 F(1,45)= P=0.6458 1752.9+36.4 1827.1+49.6 n.s.
(cm) 0.4808 0.8244 0.2141
Open Arm entries F(1,45)= P=0.4415 F(1,45 = P=0.0027 F(1,45)= P=0.1938 10.3+0.5 75+£0.7 p =0.0017
0.6029 10.06 1.740
Time spentin Open  F (1, 44) = P=0.8047 F(1,44)= P=0.0007 F(1,44)= P =0.2513 0.28 £ 0.02 0.16 £ 0.02 p = 0.0003
Arms (%) 0.06187 13.39 1.351
Distanced moved in  F (1, 45) = P=0.5502 F (1,45 = P=0.0014 F(1,45)= P=0.1448 518.3+34.1 333.4 +38.7 p =0.0012
Open Arm (cm) 0.3624 11.63 2.202
Closed Arm entties  F (1, 45) = P=03035 F(1,45)= P=00370 F(1,45)= P=0.7926 12.7+0.7 14.5+ 0.6 p = 0.0285
1.084 4.623 0.06996
Time spent in F(1,45) = P=0.3215 F(1,45 = P=0.0075 F (1,45)= P=0.0115 0.53+0.02 0.63+0.02 p = 0.0024
Closed Arms (%) 1.005 7.841 6.943
Light Dark Interaction Genotype Gender GGA3KO GGA3WT p-value
Transition n=21 n=28
Total Path length F(1,45) = P=0.3588 F (1,45 = P=0.1406 F (1,45)= P =0.9167 1986 + 95 1755 + 80 p = 0.0689
(cm) 0.8595 2.250 0.01106
Light chamber F(1,45) = P=0.9343 F(1,45 = P=0.0047 F(1,45)= P =0.5097 16.1+0.9 11.8+1 p = 0.0029
entries 0.006880 8.843 0.4417
Time spent in light F(1,45) = P=0.7013 F(1,45)= P=0.0752 F(1,45)= P=0.3269 0.30+0.02 0.24 £ 0.02 p =0.0473
chamber (%) 0.1490 3.317 0.9826
Distanced moved in  F (1, 45) = P=0.4938 F(1,45) = P=0.0976 F(1,45)= P=0.4102 613.5+40.1 498.8 £41.9 p =0.0141
Light chamber 0.4760 2.862 0.6910
Marble Burying Interaction Genotype Gender GGA3KO GGA3WT p-value
n=21 n=28
No. of marbles F(1,34)= P=02248 F(1,34)= P=04162 F(1,34)= P=0.6255 9.1+1 10.4 £1 n.s.
buried in 30mins 1.528 0.6774 0.2426
Forced Swim Test Interaction Genotype Gender GGA3KO GGA3WT p-value
n=15 n=23
Time spent F(1,34) = P=04808 F(1,34)= P<0.0001 F(1,34)= P=0.1117 97435 43.8+4.4 p<0.0001
immobile (sec) 0.5082 30.72 2.667
(Continued)
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Table 1. (Continued)

Fear Conditioning Interaction

24hrs between
conditioned stimulus
training and test

Context dependent F (1, 45) =

freezing (%) 4.475
Cued freezing (%) F (1, 45) =
0.7394

n.s, not significant p-value

doi:10.1371/journal.pone.0155799.t001

Two way ANOVA t-test
Genotype Gender GGA3KO GGA3WT p-value
n=21 n=28
P=0.0400 F (1,45 = P=0.5914 F(1,45)= P=0.0883 31.3+29 30.8+2.0 n.s.
0.2923 3.036
P=0.3944 F(1,45)= P=0.4429 F (1,45)= P=0.2045 33.1+34 35.0+ 2.1 n.s.
0.5993 1.657

later utilizing the fast acceleration paradigm (4-40rpm over 5minutes). Mice were tested over
the course of three trials (1hr apart) and latency to fall (clinging to the cylinder for 2-3 rota-
tions was also classified as a fall) measured in each trial and averaged. Data was reported as
RPM at which mice fall utilizing the following equation RPM = [End Speed-Start Speed/300] x
(Latency) + Start Speed. Mice with coordination and balance deficits will have shorter latencies
to fall during the acceleration paradigm.

Exploratory Behavior Tests. Open Field Testing (OFT): Individual mice are placed into
the open field arena (Plexiglass enclosure, 41L x 41W x 38H c¢m) surrounded by the 32 photo-
cell Smart Frame Open Field Activity System Frame (Hamilton Kinder), which continuously
tracks animal movement over the 5 minutes test period. Photobeam breaks in the center and
periphery of the arena are recorded utilizing MotorMonitor software, which provides data
including: Time spent in Center and Periphery (sec), distance travelled (cm), center crossings.

Cognitive Tests. Morris Water Maze (MWM): This test examines rodents’ spatial refer-
ence memory by measuring the ability of the mouse to remember the location of a hidden plat-
form in a water-filled pool through the use of overt spatial cues provided in the testing room in
order to escape from the water. The MWM consists of a plastic tub (122cm diameter) filled
with opaque (non-toxic white paint stained) water (25°C) to a depth 25cm below the tub rim.
The water maze is divided into four quadrants and a highly visible cue is placed on the walls of
the testing room corresponding to each of the quadrants. A hidden Plexiglass platform (10cm
x 10cm) is submerged 2cm below the water surface in center of a designated quadrant. The
mice are placed in the water from one of 4 designated random spatial drop points and given
60sec to find the hidden platform. Mice that are unable to find the platform are guided to it
and must remain on the platform for 30sec before being removed to a heated cage to dry off. A
total of 8 trials per day over the course of 3 days are utilized during the hidden platform train-
ing with an inter-trial interval of 25 minutes. Spatial memory deficits are indicated by longer
latencies to find the submerged platform over the course of the training period. 24hrs following
the cessation of submerged platform training the platform is removed and mice are subjected
to a 60sec probe trial. Mice who have correctly learnt the platform position using the spatial
cues provided spend more time in the quadrant that contained the submerged platform and
correctly cross the removed platform location more often. During the hidden platform trials
and the probe trial, the mouse is tracked using Ethovision video tracking equipment and soft-
ware (Noldus Bv).

Context and Cued Fear Associated Memory: Delayed fear conditioning is performed to
detect any potential deficits in contextual (hippocampus-dependent) or cued (hippocampus
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and amygdala-dependent) fear memory in mice. Training take place in a clear, 20cm x 20cm
by 27.5cm chamber (Stoelting Inc., Wood Dale, IL). The bottom of the chamber consists of a
metal rod floor for footshock delivery (San Diego Instruments, San Diego, CA). A camera
mounted above the chamber records the test sessions, which are scored for freezing behavior
utilizing computer driven software FreezeFrame. A computer is connected to the camera and
chamber, and controls the delivery of the unconditioned foot-shock stimulus (0.7mA, 2sec
duration, AC current). FreezeFrame computes an arbitrary freezing score to quantify bouts of
freezing. Analysis of freezing data was carried out utilizing FreezeView software. For all analy-
sis bout duration was set to 1sec, freezing threshold for the motion index was set to the nadir
occurring between 0 and 50. All videos were subsequently watched to confirm that software
selected freezing corresponded with video freezing. Training: the mouse was placed in the test
chamber and allowed to explore freely for 2min for baseline activity. Following the 2min habit-
uation period, the conditioned stimulus (tone, CS) was played for 30sec at 80 dB. During the
last 2sec of the tone, a foot-shock (unconditioned stimulus, US) was delivered which co-termi-
nated with the tone. Mice received a total of two CS-US pairing followed by 2 minutes of no
stimulus at the end of training. Contextual fear conditioning was tested 24hrs later in the same
chamber. Freezing behavior was scored for 5 minutes, in the absence of CS and US. Cued fear
conditioning was conducted 4hrs after the cessation of contextual testing; mice were placed in
a novel opaque plastic chamber, which had been thoroughly cleaned with 70% ethanol. Cued
testing consisted of a 2 minutes baseline followed by 3 minutes of CS.

Repetitive Behavior Test. Marble Burying: The tendency for repetitive behavior is mea-
sured in the mice with the marble burying test. Briefly, 22 black marbles (1cm diameter) are
placed equidistantly around the edge (1inch from wall) of a standard mouse shoebox cage
(20cm x 30cm) on top of 5-inches of hard packed bedding. The mouse is placed in the center of
the cage and left to explore the cage for 30 minutes undisturbed. After 30 minutes the mouse is
removed and the number of marbles successfully buried are counted. A marble is classified as
buried if it was at least 2/3rds covered by bedding. Mice displaying a repetitive behavior pheno-
type will bury significantly more marbles during the 30 minutes period.

Anxiety-like behavior Tests. Elevated Plus Maze (EPM): The fully automated EPM (Ham-
ilton Kinder, Poway, CA) consists of two open arms (38L x 5W c¢m) and two closed arms (38L x
5W x 15H cm) with a central intersection (5cm x 5cm) forming a cross, which is elevated 75cm
above the floor. Movement is detected by 48 equally spaced photocells. EPM exploits two con-
flicting tendencies in mice; the rodents’ innate drive to explore novel environments and their
aversion to heights, hence, mice that are more anxious will spend more time exploring the
closed arm. Mice are placed in the center intersection facing an open arm given 5 minutes to
explore the maze. Movement through the EPM are monitored utilizing Motor Monitor™ soft-
ware (Hamilton Kinder, Poway, CA) to reveal data including time spent in open and closed
arms (sec), number of entries into open and closed arms, distance travelled in open and closed
arms (cm), rest time in open and closed arms (sec).

Light/Dark Exploration (L/D): This test exploits rodents’ natural desire to explore closed
dark compartments over light open compartments to measure anxiety-related phenotypes.
Mice are placed individually into a Plexiglass chamber (44L x 22W x 22H cm) containing two
equally sized compartments; one dark completely enclosed except for side opening and the
other clear and open. The Plexiglass chamber is surrounded by a PC-interfaced horizontal
photobeam frame (SmartFrame® Cage Rack System; Hamilton Kinder), which consists of
photocells (8L x 4W cm) that continuously tack the mouse’s movements. Mice are placed in
the dark compartment and given 5 minutes to freely explore both chambers. Data revealed
through use of Motor Monitor™ software (Hamilton Kinder, Poway, CA) include: distance
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travelled (cm), time spent in dark and light chambers (sec) and number of transitions between
chambers.

Depressive-like Behavior Test. Porsolt Forced Swim test: Originally designed by Porsolt
etal, (1978), it is used to measure depressive-like phenotypes in rodent and exploits the fact
that mice forced to swim in a confined environment will display immobility following failed
attempts to escape. The greater the level of immobility in mice during this test is considered to
indicate increased despair or depressive-like behavior. Mice are placed individually into a glass
chamber (height 40cm, diameter 18cm) containing water (30cm depth, 25°C) and allowed to
swim for 6 minutes while been video- recorded. Mice are then scored for time spent immobile
following the initial 2 minutes habituation period during the 6 minutes trial. Immobility is clas-
sified circling floating behavior where only minimal leg movement (i.e. one leg) is present to
prevent drowning, with no forward trajectory.

Electrophysiology experiments

Hippocampal slice preparation. Brain slices were prepared from 6 to 8 week old male
GGA3KO mice and GGA3WT littermates. Mice were anesthetized with isoflurane, decapi-
tated, and brains were rapidly dissected out and put in an ice-cold cutting solution containing
(mM): 126 NaCl, 2.5 KCl, 0.5 CaCl,, 2 MgCl,, 26 NaHCO3, 1.25 NaH,POy,, 10 glucose, 1.5
sodium pyruvate, and 3 kynurenic acid. Coronal 310pm thick slices were cut with the vibra-
tome VT1000S (Leica Microsystems, St Louis, MO, USA). The slices were then transferred into
incubation chamber filled with pre-warmed (31-32°C) oxygenated artificial cerebro-spinal
fluid (ACSF) with the following composition (mM): 126 NaCl, 2.5 KCl, 2 CaCl,, 2 MgCl,, 26
NaHCO;, 1.25 NaH,PO,, 10 glucose, 1.5 sodium pyruvate, 1 glutamine, 3 kynurenic acid and
0.005 GABA bubbled with 95% O,—5% CO.. Slices were allowed to recover at 32°C for 1h
before recording.

Electrophysiology Recordings. After recovery, a single slice was transferred to a sub-
merged recording chamber on the stage of an upright microscope (Nikon FN-1) with a 40X
water immersion objective equipped with DIC/IR optics. Slices were maintained at 32°C and
gravity-superfused with ACSF solution throughout experimentation and perfused at rate of 2
ml/min with oxygenated (O,/CO, 95/5%) ACSF. Adequate O, tension and physiological pH
(7.3-7.4) were maintained by continually bubbling the media with 95% O,/5% CO,.

Currents were recorded from the dentate gyrus granule cells (DGGCs) in 310-pm-thick coro-
nal hippocampal slices. Patch pipettes (5-7 MQ) were pulled from borosilicate glass (World Pre-
cision Instruments) and filled with intracellular solution with the following composition (mM):
140 CsCl, 1 MgCl,, 0.1 EGTA, 10 HEPES, 2 Mg-ATP, 4 NaCl and 0.3 Na-GTP (pH:7.25). A 5
minutes period for stabilization after obtaining the whole-cell recording conformation (holding
potential of -60mV) was allowed before currents were recorded using an Axopatch 200B ampli-
fier (Molecular Devices), low-pass filtered at 2kHz, digitized at 20kHz (Digidata 1440A; Molecu-
lar Devices), and stored for off-line analysis.

Electrophysiology Analysis. For tonic current measurements, an all-points histogram was
plotted for a 10sec period before and during picrotoxin application, once the response reached
a plateau level. A Gaussian fit to these points gave the mean current amplitude and the differ-
ence between these two values was considered to be the tonic current and normalized to cell
capacitance (pA/pF). Series resistance and whole-cell capacitance were continually monitored
and compensated throughout the course of the experiment. Recordings were excluded from
data analysis if series resistance increased by >20%. Spontaneous IPSCs were analyzed using
the mini-analysis software (version 5.6.4; Synaptosoft, Decatur, GA). sIPSCs were recorded for
a minimum of 5 minutes. Minimum threshold detection was set to 3 times the value of baseline
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noise signal. To assess sSIPSC kinetics, the recording trace was visually inspected and only
events with a stable baseline, sharp rising phase, and single peak were used to negate artifacts
due to event summation. Only recordings with a minimum of 100 events fitting these criteria
were analyzed. Difference in amplitude distributions of spontaneous currents obtained from a
single neuron was examined by constructing all-point cumulative probability distributions.

Quantification of inhibitory synapses

Immunohistochemistry. Three month-old male GGA3WT and GGA3KO mice were per-
fused intracardially with PBS (0.1M, pH:7.4) followed by 4% PFA in PBS. Brains were removed
and post-fixed with 4% PFA in PBS for 2hrs, at 4°C. The next day, the brains were washed 3
times in PBS and then cryoprotected with 30% sucrose in PBS. Coronal sections of 50pum
where sliced using a Leica SM2010R sliding microtome. Antigen retrieval was performed by
incubating free floating sections in 10mM sodium citrate buffer (pH 6.0) preheated at 60°C for
35min, and later brought to room temperature and rinsed in PBS. Non-specific binding sites
were blocked for 2hrs at room temperature (5% BSA, 0.3% Triton-X-100 in PBS). Sections
were then incubated with the following primary antibodies (diluted in 2% BSA, 0.3% Triton-X-
100 in PBS): rabbit polyclonal anti-vGAT (1:2000, Cat.No. 131 003, Synaptic System, Ger-
many) and mouse monoclonal anti-gephyrin (1:400, Cat.No 147 111, Synaptic System, Ger-
many) for 70 hours at 4°C). The specificity of anti-vGAT and anti-gephyrin antibodies has
been previously demonstrated [20, 21]. Next, the sections were incubated with the appropriate
secondary antibodies (goat anti-rabbit IgG Alexa Fluor™ 488 and goat anti-mouse IgG Alexa
Fluor™ 594, Invitrogen, USA) for 2hrs at RT (1:500 in 2% BSA, 0.3% triton-X-100 in PBS). Sec-
tions where finally washed in PBS and mounted on superfrost slides using Fluoromount-G®™
mounting media (Southern Biotech, USA).

Synapse quantification. The synapse quantification was performed according to a well-
established protocol [22]. Synaptic quantification of inhibitory synapses was performed in the
dentate gyrus using two coronal brain sections per animal (4 males GGA3WT and 6 males
GGA3KO) immunostained with pre- and post-synaptic markers (vGAT and gephyrin, respec-
tively) and 5-um confocal scans were performed (optical section width, 0.34pm; 15 optical sec-
tions each) using a 63X/NA 1.4 immersion oil objective on a LEICA SPE confocal microscope
equipped with a spectral scanner system (range of detection from 400 to 850nm). The acquisi-
tion settings were set up on GGA3WT brain sections, and maintained constant for GGA3KO
mice. Three consecutive optical sections were merged, to obtain a z-stack projection of ~ 1um,
and analyzed using the ImageJ (v1.29, NIH) Puncta Analyzer Plug-in Application, provided by
Dr. C. Eroglu, as previously described [22]. Synapses were defined as vGAT and gephyrin posi-
tive co-localizing puncta. The number of pre- and postsynaptic co-localizing puncta were
counted and expressed as total number of co-localizing puncta per 5pum depth z-stack image.

Statistical Analysis

GraphPad Prism 6 was used for statistical analysis. For all behavioral analysis with the excep-
tion of MWM a two-way ANOVA was used to compare genotype, gender and their interaction.
A two-tailed Student’s t-test was used for post-hoc analysis to compare only the effect of geno-
type as this comparison was determined a priori to be the one of interest. Data sets consisting
of two-groups, which passed normality and Bartlett’s test, were analyzed using an unpaired ¢-
test, where standard deviations between groups were significantly different a Welch correction
was employed. Two-group data sets that demonstrated non-normal distribution were analyzed
by Mann-Whitney test. For the analysis of the MWM test, SPSS software (IBM inc) was used
to perform a 3-way analysis of variance with the following independent variables: Genotype,
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Gender, and Day of experiment. In the analysis the Day variable was treated as repeated mea-
sures, while the other two, Gender and Genotype, where not. Interaction factors were included
for interactions between all independent variables. Two-way ANOVA with repeated measures
was used to compare genotype and days of training.

Results
GGABKO mice show normal basal activity and motor coordination

Monitoring of circadian locomotor activity over a period of 24 hr to reveal basal activity levels
demonstrated no overt differences in basal activity between GGA3 null (GGA3KO) and their
WT littermates as no statistically significant differences were observed in total distance moved
or total rest time between GGA3KO and GGA3WT mice over a 24 hr period (Table 1). Fur-
thermore, no differences were observed in gross motor performance between GGA3KO and
GGA3WT littermates as measured by rotarod monitoring assay (Table 1).

GGABSBKO mice exhibit enhanced exploratory behavior and novelty-
induced hyperactivity

Open Field Testing (OFT) of GGA3KO and GGA3WT mice revealed that GGA3 deletion was
correlated with increased locomotor activity (Table 1, Fig 1A). This increased locomotion in
GGA3KO versus their wild-type counterparts in the open field arena was in direct contrast to
the comparative locomotor and basal activity witnessed in GGA3KO and WT mice in circadian
activity testing. Taken together, the selective hyperactivity phenotype witnessed in GGA3KO
mice only in the open field task indicates that it is novelty-induced. In addition to the increased
locomotor activity, GGA3KO mice spend increased time in the center of the field (Fig 1B) and
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Fig 1. GGA3KO mice exhibit enhanced exploratory behavior and novelty-induced hyperactivity. GGA3KO and GGA3WT
mice were subjected to the Open Field Test (OFT). GGA3 deletion induced enhanced exploratory behavior and hyperactivity as
demonstrated by increased locomotor activity (A) and increased time spent exploring the center of the arena (B). The absence of
differences in basal activity and locomotion in the circadian activity monitoring test indicates that the hyperactivity phenotype
witnessed in GGA3KO mice is novelty-induced. The graphs represent mean + SEM. n = 21 GGA3KO mice; n = 28 GGA3WT mice of
mixed gender. The t-test was used for statistical analysis and * indicate a p-value <0.05.

doi:10.1371/journal.pone.0155799.g001
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trend towards increased exploration of the center of the open field arena (% of total path length
in center GGA3KO 0.219 + 0.013, GGA3WT 0.184 + 0.011, p = 0.0518) which taken together
with increased locomotion indicates increased exploratory behavior in GGA3KO mice com-
pared to their WT counterparts.

GGAB3BKO mice do not exhibit cognitive deficits or altered repetitive
behaviors

GGA3KO mice did not exhibit deficits in spatial reference memory as tested by Morris water
maze including a reversal analysis (Fig 2A-2D, Tables 2 and 3) and in contextual (hippocam-
pus-dependent) or cued (hippocampus and amygdala-dependent) fear associated memory
(Table 1). Furthermore, GGA3KO mice did not demonstrate any differences in repetitive

Hidden Platform Trials Hidden Platform Trials-Reversal

601 401
— - GGA3KO n=21 — - GGA3KO n=21
g 5 GGA3WT n=28 g 5 = GGA3WT n-28
E 404 £
< <
g = 201
2 2
> 204 >
g g 101

0 T T T 0 %l, ql T
N v ~
& N N & & &
Ist probe trial 2nd probe trial

» 07 ., 67
s —I— N
E £
el 3
2 s
& =)
S 2+ 5 24
8 B
E e
z z

0 T 0 T

&S &
o\ * ”;%'Ou yf’é u YS&'OV
OQV* &/\ GQV* &/\ & Q//\ & Q,/\

Fig 2. GGA3KO mice do not exhibit deficits in spatial reference memory. GGA3KO and GGA3WT were subjected to Morris Water Maze test. Both
groups of mice demonstrate a significant decrease in latency to find the hidden platform (8 trials/day; 25min ITl) in initial testing (Days 1-3) phase (A) and
during reversal phase (Days 8-10) (B) (Days 1-3 ***p value <0.001, Days 8-10 ***p value <0.001) however no significant difference in latency is
observed between GGA3KO and WT mice on any day of testing. No significant differences were observed in the number of platform crossings during the
1t or 2" probe trial (C-D). The graphs represent mean + SEM. n = 14 GGA3KO mice and n = 14 GGA3WT mice of mixed gender. Two-way ANOVA
repeated measures and t-test were used for latency to platform and probe trials, respectively.

doi:10.1371/journal.pone.0155799.9002
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Table 2.
Three way ANOVA Two way ANOVA repeated measures
Morris Water Interaction Genotype Gender Interaction Genotype Day
Maze
Hidden
platform trials
(8 trials per
day)
Latency to F P=0679 F P=0261 F P=0.018 F (2, P=0.3894 F(1, P=0.2985 F (2, P < 0.0001
Platform Day  (1,24) = (1,24) = (1,24) = 52) = 26) = 52) =
1-3 (sec) 0.176 1.323 6.388 0.9605 1.125 77.48
Swim speed F P=0416 F P=0.118 F P=0.379 F(2, P=0.2750 F(1, P=0.1140 F (2, P < 0.0001
Day 1-3 (cm/ (1,24) = (1,24) = (1,24) = 52) = 26) = 52) =
s) 0.684 2.622 0.803 1.323 2.674 61.10
Reversal
hidden
platform trial
(8 trials per
day)
Latency to F P=0717 F P=0.195 F P=0417 F (2, P=0.6444 F(1, P=0.1843 F (2, P < 0.0001
Platform Day  (1,24) = (1,24) = (1,24) = 52) = 26) = 52) =
8-10 (sec) 0.134 1.776 0.683 0.4432 1.860 28.15
Swim speed F P=0492 F P=0.065 F P=0476 F (2, P=0.2533 F(1, P=0.1383 F (2, P < 0.0001
Day 8-10 (1,24) = (1,24) = (1,24) = 52) = 26) = 52) =
(cm/s) 0.488 3.739 0.525 1.410 2.338 34.83

doi:10.1371/journal.pone.0155799.1002

behaviors as measured by the marble burying test when compared to their WT littermates
(Table 1).

GGABS deletion induces a reduction in anxiety-like behaviors

Anxiety-like behaviors were assessed with two separate behavioral paradigms: elevated plus
maze (EPM) and the light/dark transition tests (L/D). In the elevated plus maze GGA3KO mice
entered the open arm more frequently (Fig 3A), spent significantly more time in the open arm
(Fig 3B) and explored the open arm of the maze more (Fig 3C) than their GGA3WT littermates.

Table 3.
Two way ANOVA t-test
1st Probe trial (24hrs following Interaction Genotype Gender GGA3KO GGA3WT p-
hidden platform training) n=14 n=14 value
Time spent in correct quadrant F(1,24)= P=059 F(1,24)= P=0508 F(1,24)= P=0.341 227+2A1 245+1.8 n.s.
(sec) 0.289 0.450 0.942
No. of platform crossings F(1,24)= P=0931 F(1,24)= P=0.79 F(1,24)= P=0546 4.3+0.6 41+05 n.s.
0.007 0.068 0.375
2nd Probe trial (24hrs following
reversal training)
Time spent in correct quadrant F(1,24)= P=0745 F(1,24)= P=0885 F(1,24)= P=0.041 231+1.9 22.7+23 n.s.
(secs) 0.107 0.021 4.647
No. of platform crossings F(1,24)= P=0512 F(1,24)= P=0.083 F(1,24)= P=0.001 3.7+0.8 51+05 n.s.
0.441 3.252 12.33

n.s, not significant p-value

doi:10.1371/journal.pone.0155799.1003
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Fig 3. GGA3 deletion induces a reduction in anxiety-like behaviors. GGA3 null mice display decreased anxiety-like behaviors in two different testing
paradigms (A-C: Elevated Plus Maze; D-F: Light-Dark Transition). GGA3KO mice entered more frequently (A), spent significantly more time (B) and
explored more (C) the open-arm of the elevated-plus maze in a 5 minute test than their WT littermates. GGA3KO mice entered more frequently (D), spent
significantly more time (E) and explored more (F) the light chamber of the light/dark transition apparatus in a 5 minutes test than their WT littermates. The
graphs represent mean + SEM. n =21 GGA3KO mice and n = 28 GGA3WT mice of mixed gender were used in the both tests. The t-test was used for
statistical analysis and * indicate a p-value <0.05.

doi:10.1371/journal.pone.0155799.9003

Furthermore, in the light/dark transition test GGA3KO mice entered the light chamber more
often (Fig 3D), spent significantly more time in the light chamber (Fig 3E) and demonstrated a
greater exploration of the light chamber (Fig 3F). Thus, GGA3KO mice demonstrated reduced
anxiety-like behaviors in both tests (Table 1). Moreover, this phenotype was independent of
increased locomotor activity or hyperactivity as the path length was similar in GGA3WT and
GGA3KO mice in both elevated plus maze and light dark/transition (EPM: 1752.9 + 36.4 vs
1827.1 £ 49.6 and L/D:1755+80 and 1986+95, respectively).

GGAS3 deletion reduces depressive-like behaviors

In light of the reduction in anxiety-like behaviors in GGA3KO mice, GGA3KO and GGA3WT
were subjected to the Porsolt Forced Swim Test. GGA3KO mice demonstrated significantly
reduced immobility in compared to their WT littermates (Fig 4). The Porsolt Forced Swim
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Fig 4. GGA3 deletion induces an anti-depressive-like phenotype. GGA3KO and GGA3KO were
subjected to the Porsolt Forced Swim Test and demonstrated significantly reduced immobility in compared to
their WT littermates during a six minutes test. The graph represents mean + SEM. n = 15 GGA3KO mice and
n =23 GGA3WT mice of mixed gender were used. The t-test was used for statistical analysis and * indicate a
p-value <0.05.

doi:10.1371/journal.pone.0155799.g004

Test was originally developed to determine the effectiveness of acute anti-depressant adminis-
tration on learned helplessness/depressive-like behavior in rodents. The significant reduction
in immobility in GGA3KO mice provides further evidence of a potential role for GGA3 in
emotional and motivational behaviors. However, as was noted in open-field testing, the predis-
position of GGA3KO mice to novelty induced hyperactivity and increased locomotion poten-
tially confounds this behavioral phenotype and thus it was not explored further.

GGABSBKO mice display an increase in phasic inhibition and decreased
tonic current

Given that GABAergic inhibition is implicated in anxiety and depressive behaviors [19], we
next compared the properties of synaptic and extrasynaptic inhibitory currents in DGGCs
from GGA3KO and GGA3WT mice. We decided to perform recording from the DGGCs given
that both GGA3 and BACEI are highly expressed in this region [17, 23]. Patch-clamp record-
ings were used to analyze GABAergic inhibition from the DGGCs from GGA3KO and
GGA3WT and revealed that phasic and tonic properties were altered in GGA3KO mice. In
DGGCs from GGA3KO mice, tonic current was significantly decreased (52.19 + 9.768 vs.
23.55 + 8.62 pA, for GGA3WT and GGA3KO littermates respectively, p< 0.05, n = 7-8 cells, 3
mice of each genotype, Fig 5). In contrast, the amplitude of sSIPSCs was significantly increased
in GGA3KO compared to GGA3WT (54.21+ 0.71 vs. 80.24 + 1.69 pA, for GGA3WT and
GGA3KO, respectively, p <0.005, n = 7-8 cells, 3 mice of each genotype, t-test). Moreover, the
decay time of SIPSCs (2.43 + 0.06 vs. 4.13 + 0.07 s, p > 0.0001, n = 6 cells, 3 mice of each geno-
type for GGA3WT and GGA3KO mice, respectively) was significantly slowed in GGA3KO
mice (Fig 6A-6C) but, the inter-event interval of sIPSCs was comparable between GGA3WT
and GGA3KO genotype (299.1 + 8.743 vs. 318.6 + 13.68 ms, p>0.05, n = 6 cells, 3 mice of each
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Fig 5. GGA3KO mice display deficits in GABAergic tonic current. Recordings were made from DGGCs in hippocampal slices from 6—8 week-old
GGA3WT and GGA3KO mice in the presence of 1uM GABA. Tonic current was determined by measuring the difference in holding current amplitude
before and after applying 100 pM picrotoxin (PTX). GGA3KO mice exhibited a significant reduction in tonic current amplitude (A). The graph represents
mean + SEM of current amplitude and density (B). * = significantly different to control (p<0.05; t-test, n = 7-8 cells, from 3 animal for genotype).

doi:10.1371/journal.pone.0155799.9005

genotype for GGA3WT and GGA3KO mice, respectively). Collectively, these results indicate
that GGA3KO mice display reduced tonic but enhanced phasic inhibition.

The number of inhibitory synapses is increased in the dentate gyrus of
GGASBKO mice

Since increased GABAergic inhibition could results from an increased number of GABAergic
synapses, we next determined the number of the inhibitory synapses (defined as gephyrin/
VGAT co-localizing puncta) in the dentate gyrus. Hippocampal sections were immunostained
using pre- and post-synaptic marker antibodies (vGAT and gephyrin, respectively) and images
acquired by confocal microscopy (Fig 7A). The number of gephyrin, vGAT, and co-localizing
puncta (vGAT/gephyrin) were quantified in the dentate gyrus of GGA3WT (Fig 7A) and
GGA3KO mice (Fig 7A) as previously described [22, 24]. A magnified image of the molecular
granular layer of the dentate gyrus (MolDG) it is shown in the inset on the right panels, where
the co-localized puncta are highlighted within a circle. The number of gephyrin, vGAT and co-
localizing puncta/synapses were increased in GGA3KO mice (Fig 7B) compared to GGA3WT
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Fig 6. GGA3KO mice display increased GABAergic phasic current. Recordings were made from DGGCs in hippocampal slices from 6-8 week-old
GGA3WT and GGA3KO mice. GGA3KO mice displayed larger sIPSC amplitudes and longer decay times compared to age-matched controls (A-B) as
seen in the cumulative probabilities for sIPSC amplitude and decay (C). The graph represents mean + SEM of sIPSC amplitude and decay from
GGA3WT and GGA3KO mice (*** p<0.0001 Mann-Whitney test from 6 cells from 3 animals for genotype).

doi:10.1371/journal.pone.0155799.g006

littermates. These findings are in further support of the electrophysiology data and strongly
suggest that GGA3 plays a pivotal role in GABAergic transmission.

Discussion

Polarized delivery of membrane proteins is regulated by the interaction of signals present in
their carboxyl-terminal fragment (CTF) with specific trafficking molecules [25]. Sorting signals
include the di-leucine-based motifs, [DE]XXXL[LI] or DXXLL, the tyrosine-based motifs,
NPXY or YXX0, and ubiquitin [26]. The [DE]XXXL[LI] motif is recognized by the adaptor
protein (AP) complexes AP-1, 2, 3 and 4, while GGAL, 2, and 3 bind to DXXLL via the VHS
domain. While increasing evidence is accumulating for a role of the AP complexes in neuronal
polarized sorting [27-29], the function of GGAs in neurons remains to be clarified. We report
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Fig 7. The number of inhibitory synapses is increased in the dentate gyrus of GGA3KO mice. (A) 50 um coronal brain slices were stained with pre-
and post-synaptic marker antibodies (vGAT and gephyrin, respectively) and fluorescent conjugated secondary antibodies, followed by confocal
microscopy. The numbers of vGAT (green, left panels), gephyrin (red, middle panels), and co-localizing puncta (vGAT/gephyrin, right panels) were
quantified in the dentate gyrus of GGA3WT (upper panels) and GGA3KO mice (lower panels). A magnified image of the molecular granular layer of the
dentate gyrus (MolDG) it is shown in the inset of the right panels, where the co-localizing puncta are highlighted within a circle. GGA3KO mice showed an
increase in the presynaptic, postsynaptic, and co-localizing puncta. GrDG: Granular cell layer, MoIDG: Molecular layer. Scale bar 10um. (B) The graph
represents mean + SEM of the total number of puncta measured in 4 GGA3WT and 6 GGA3KO mice using Puncta Analyzer Plug-in. Two-four optical fields
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(116.4 x 114.4 x 5 ym) from each of two brain sections were analyzed for each mouse. The number of gephyrin, vGAT and co-localizing puncta were
increased in GGA3KO mice compared to the wild-type littermates. Mann-Whitney test was used for statistical analysis, * p<0.05, **p = 0.0095.

doi:10.1371/journal.pone.0155799.9007

here the first behavioral characterization of GGA3 null mice. We found that genetic deletion of
GGA3 results in novelty-induced hyperactivity and decreased anxiety-like behaviors. In order
to identify the underlying mechanism(s) of these behavioral phenotypes, we studied GABAer-
gic transmission given its key role in anxiety- and depressive-like behaviors [19]. Patch-clamp
recordings in DGGCs revealed that phasic GABA inhibition was increased, while tonic GABA
inhibition was decreased. Moreover, we found that the number of inhibitory synapses was
increased in the GGA3 null mice. Thus, it is apparent that GGA3 deficient mice have elevations
in phasic inhibition, increased number of inhibitory synapses events and reduced anxiety-like
behaviors. Significantly these phenotypes are similar to those seen in mice in which tyrosines
365/7 (Y365/7F) in the GABA AR y2 subunit have been mutated to alanines. This mutation
slows receptor endocytosis by decreasing clathrin-AP2 binding leading to an increase in size
and number of inhibitory synapses, which correlates with a reduced depressive-like phenotype
[30-32]. Moreover mice with reduced levels of the y2 subunit have enhanced anxiety- and
depressive-like behaviors [33, 34].

The mechanisms by which GGA3 modulates the formation and/or activity of inhibitory
synapses remains speculative, however it is important to note that GABA ,Rs undergo ubiqui-
tin-dependent lysosomal targeting which is dependent upon 4 sequential lysine residues in the
intracellular domain of the y2 subunit. Critically this mechanism has been established to regu-
late the GABA 4R number at inhibitory synapses together with the efficacy of phasic inhibition
[35]. Thus GGA3 may participate in the regulation of GABA 4R endocytic sorting. Consistent
with this notion the y2L subunit variant contains a di-leucine motif downstream of the ubiqui-
tinated lysine residues that may facilitate the interaction of GABA sRs with GGA3. Accordingly
our results reveal that ablating GGA3 expression increases the number of inhibitory synapses
and the efficacy of phasic inhibition. We also noted a decrease in the efficacy of tonic inhibition
in the GGA3 KO mice. It is emerging that there appears to be a reciprocal relationship between
the efficacy of phasic and tonic inhibition. In particular male mice expressing the GABA AR y2
Y365/7F mutant have increased phasic but decreased tonic inhibition. Likewise mice in which
serine residues 408/9 in the f3 subunit have been mutated to alanines show similar changes in
the equilibrium between phasic and tonic inhibition [31, 36, 37]. However the physiological
significance of these changes remains to be addressed.

In addition to a direct role of GGA3 in GABA 4R degradation, it is also possible that at least
some of the phenotypes displayed by the GGA3 null mice are the consequence of the BACE1
elevation observed in the brain of GGA3 null mice [17]. Accordingly, BACE1 transgenic mice
exhibit a bolder, less anxious phenotype compared to non-transgenic mice [38, 39]. However,
the mechanisms underlying the behavioral phenotypes of the BACE1 transgenic mice remain
to be clarified. In contrast, the variety of phenotypes described in the BACE1 null mice is linked
to BACE1 multiple substrates [40]. A well-studied BACE1 substrate is Neuregulin-1 (NRGI).
NRG are a family of growth and differentiation factors with a wide range of functions in the
nervous system. NRG proteins are ligands for the ErbB family of receptor tyrosine kinases [41,
42]. Lack of BACE1 processing of NRG1 has been proposed to be responsible for the hyperac-
tivity and schizophrenia endophenotypes, spine density reduction, myelination deficits in
central and peripheral nervous system and deficits in formation and maturation of muscle
spindles observed in BACEI null mice [42]. Interestingly, NRG1 has also been shown to pro-
mote GABAergic differentiation and synaptogenesis by interacting with its receptor Erbb4
[43]. Moreover, administration of exogenous NRGI reduces anxiety-like behaviors and
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increases GABAergic transmission in mice [44]. Thus, it possible that increased BACE1-me-
diated processing of NRG1 could lead to increased GABAergic transmission and reduced
anxiety.

Additional BACEL1 substrates have been identified by quantitative proteomics analysis [45-
47] raising the possibility that the increased BACE1-mediated cleavage of other molecules can
contribute to the phenotypes observed in the GGA3 null mice. For example, neuroligin-2, a
member of a family of postsynaptic cell-adhesion molecules [48], has been identified as BACE1
substrates [46]. Most notably, the overexpression of neuroligin-2 has been shown to drive post-
synaptic differentiation of inhibitory synapses [49].

Several synaptic alterations have been described in BACE1 null mice: an increase in the Pair
Pulse facilitation (PPF) in the CA1 and CA3 regions of the hippocampus [50-52]; no change in
LTP nor in LTD, in CA1 region of the hippocampus, but decreased mossy fiber LTP (mfLTP)
and increased in LTD in the CA3 region, approximately 10% more compare with wild-type
mice [51-53]. However, it remains unknown the extent to which deletion or overexpression of
BACE1 produces changes in GABAergic transmission.

BACEI is a stress-related protease that is upregulated in AD brains and following acute
brain injuries [54]. Our previous studies have established that depletion of GGA3 and BACE1
elevation occurs in AD and acute brain injuries. We originally showed that GGA3 levels are
significantly decreased and inversely correlated with BACEI levels in the post-mortem tempo-
ral cortex of patients with AD [15]. Our findings have been confirmed by two independent
studies conducted in AD brain samples of Australian and European origin [55] (US Patent
Application 20120276076, Annaert, Wim; et al. November 1, 2012). Moreover, we have deter-
mined that GGA3 is depleted while BACE1 levels increase following experimental stroke and
traumatic brain injury (TBI) [15, 17]. Thus, the phenotypes observed in the GGA3 null mice
could help to explain at least some of the symptoms observed in AD patients and TBI sufferers.
Patients with Alzheimer’s disease are subject to anxiety, but sometimes also to the opposite ten-
dency of disinhibition [56-62]. Similarly, neuropsychiatric sequelae of TBI include anxiety dis-
orders but also dishinibition and risk-taking behaviors [63-65]. Reduced anxiety and increased
risk-taking behavior have been observed in mice post-TBI [66, 67] and in 5XFAD and other
mouse models of AD pathology [68-70]. Furthermore, alterations of GABAergic transmission
have been detected in mouse models of AD [71] and could be the underlying mechanism(s) of
seizures observed in mouse models and AD patients [72]. Similarly, alterations of GABAergic
transmission have been implicated in post-traumatic epilepsy [73].

Further studies will be necessary to dissect the role of BACEL1 elevation from GGA3 deple-
tion under normal and pathological conditions.
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