692 research outputs found

    Crystal field states of Kondo lattice heavy fermions CeRuSn3 and CeRhSn3

    Get PDF
    Inelastic neutron scattering experiments have been carried out to determine the crystal field states of the Kondo lattice heavy fermions CeRuSn3 and CeRhSn3. Both the compounds crystallize in LaRuSn3-type cubic structure (space group Pm-3n) in which the Ce atoms occupy two distinct crystallographic sites with cubic (m-3) and tetragonal (-4m.2) point symmetries. The INS data of CeRuSn3 reveal the presence of a broad excitation centered around 6-8 meV which is accounted by a model based on crystal electric field (CEF) excitations. On the other hand, the INS data of isostructural CeRhSn3 reveal three CEF excitations around 7.0, 12.2 and 37.2 meV. The neutron intensity sum rule indicates that the Ce ions at both cubic and tetragonal Ce sites are in Ce3+ state in both CeRuSn3 and CeRhSn3. The CEF level schemes for both the compounds are deduced. We estimate the Kondo temperature T_K = 3.1(2) K for CeRuSn3 from neutron quasielastic linewidth in excellent agreement with that determined from the scaling of magnetoresistance which gives T_K = 3.2(1) K. For CeRhSn3 the neutron quasielastic linewidth gives T_K = 4.6 K. For both CeRuSn3 and CeRhSn3, the ground state of Ce3+ turns out to be a quartet for the cubic site and a doublet for the tetragonal site.Comment: 12 pages, 13 figures, 2 tables, to appear in Phys. Rev.

    Physical properties of noncentrosymmetric superconductor LaIrSi3: A {\mu}SR study

    Full text link
    The results of heat capacity C_p(T, H) and electrical resistivity \rho(T,H) measurements down to 0.35 K as well as muon spin relaxation and rotation (\muSR) measurements on a noncentrosymmetric superconductor LaIrSi3 are presented. Powder neutron diffraction confirmed the reported noncentrosymmetric body-centered tetragonal BaNiSn3-type structure (space group I4\,mm) of LaIrSi3. The bulk superconductivity is observed below T_c = 0.72(1) K. The intrinsic \Delta C_e/\gamma_n T_c = 1.09(3) is significantly smaller than the BCS value of 1.43, and this reduction is accounted by the \alpha-model of BCS superconductivity. The analysis of the superconducting state C_e(T) data by the single-band \alpha-model indicates a moderately anisotropic order parameter with the s-wave gap \Delta(0)/k_B T_c = 1.54(2) which is lower than the BCS value of 1.764. Our estimates of various normal and superconducting state parameters indicate a weakly coupled electron-phonon driven type-I s-wave superconductivity in LaIrSi3. The \muSR results also confirm the conventional type-I superconductivity in LaIrSi3 with a preserved time reversal symmetry and hence a singlet pairing superconducting ground state.Comment: 11 pages, 8 figures, 2 table

    MacWilliams Identities for mm-tuple Weight Enumerators

    Full text link
    Since MacWilliams proved the original identity relating the Hamming weight enumerator of a linear code to the weight enumerator of its dual code there have been many different generalizations, leading to the development of mm-tuple support enumerators. We prove a generalization of theorems of Britz and of Ray-Chaudhuri and Siap, which build on earlier work of Kl{\o}ve, Shiromoto, Wan, and others. We then give illustrations of these mm-tuple weight enumerators.Comment: 17 pages. Accepted to SIAM Journal on Discrete Mathematic

    Hamming weights and Betti numbers of Stanley-Reisner rings associated to matroids

    Full text link
    To each linear code over a finite field we associate the matroid of its parity check matrix. We show to what extent one can determine the generalized Hamming weights of the code (or defined for a matroid in general) from various sets of Betti numbers of Stanley-Reisner rings of simplicial complexes associated to the matroid

    A deep learning approach for complex microstructure inference

    Get PDF
    Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learning’s seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 30–50 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology

    Towards a fullerene-based quantum computer

    Full text link
    Molecular structures appear to be natural candidates for a quantum technology: individual atoms can support quantum superpositions for long periods, and such atoms can in principle be embedded in a permanent molecular scaffolding to form an array. This would be true nanotechnology, with dimensions of order of a nanometre. However, the challenges of realising such a vision are immense. One must identify a suitable elementary unit and demonstrate its merits for qubit storage and manipulation, including input / output. These units must then be formed into large arrays corresponding to an functional quantum architecture, including a mechanism for gate operations. Here we report our efforts, both experimental and theoretical, to create such a technology based on endohedral fullerenes or 'buckyballs'. We describe our successes with respect to these criteria, along with the obstacles we are currently facing and the questions that remain to be addressed.Comment: 20 pages, 13 figs, single column forma

    Calculated corrections to superallowed Fermi beta decay: New evaluation of the nuclear-structure-dependent terms

    Get PDF
    The measured ftft-values for superallowed 0+→0+0^{+} \to 0^{+} nuclear β\beta-decay can be used to obtain the value of the vector coupling constant and thus to test the unitarity of the Cabibbo-Kobayashi-Maskawa matrix. An essential requirement for this test is accurate calculations for the radiative and isospin symmetry-breaking corrections that must be applied to the experimental data. We present a new and consistent set of calculations for the nuclear-structure-dependent components of these corrections. These new results do not alter the current status of the unitarity test -- it still fails by more than two standard deviations -- but they provide calculated corrections for eleven new superallowed transitions that are likely to become accessible to precise measurements in the future. The reliability of all calculated corrections is explored and an experimental method indicated by which the structure-dependent corrections can be tested and, if necessary, improved.Comment: Revtex4, one figur

    Properties of an acid-tolerant, persistent Cheddar cheese isolate, Lacticaseibacillus paracasei GCRL163

    Get PDF
    The distinctive flavours in hard cheeses are attributed largely to the activity of nonstarter lactic acid bacteria (NSLAB) which dominate the cheese matrix during maturation after lactose is consumed. Understanding how different strains of NSLAB survive, compete, and scavenge available nutrients is fundamental to selecting strains as potential adjunct starters which may influence product traits. Three Lacticaseibacillus paracasei isolates which dominated at different stages over 63-week maturation periods of Australian Cheddar cheeses had the same molecular biotype. They shared many phenotypic traits, including salt tolerance, optimum growth temperature, growth on N-acetylglucosamine and N-acetylgalactosamine plus delayed growth on D-ribose, carbon sources likely present in cheese due to bacterial autolysis. However, strains 124 and 163 (later named GCRL163) survived longer at low pH and grew on D-tagatose and D-mannitol, differentiating this phenotype from strain 122. When cultured on growth-limiting lactose (0.2%, wt/vol) in the presence of high concentrations of L-leucine and other amino acids, GCRL163 produced, and subsequently consumed lactate, forming acetic and formic acids, and demonstrated temporal accumulation of intermediates in pyruvate metabolism in long-term cultures. Strain GCRL163 grew in Tween 80-tryptone broths, a trait not shared by all L. casei-group dairy isolates screened in this study. Including citrate in this medium stimulated growth of GCRL163 above citrate alone, suggesting cometabolism of citrate and Tween 80. Proteomic analysis of cytosolic proteins indicated that growth in Tween 80 produced a higher stress state and increased relative abundance of three cell envelope proteinases (CEPs) (including PrtP and Dumpy), amongst over 230 differentially expressed proteins
    • …
    corecore