2,270 research outputs found

    Results from the Analysis of Crystal Ball Meson Production Measurements at BNL

    Get PDF
    The Crystal Ball spectrometer, with its nearly complete angular coverage, is an efficient detector of photon and neutron final states. While installed in the C6 beamline of the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL), this feature was used in a series of precise measurements of reactions with all-neutral final states. Here we concentrate on the analysis of data from the pion-induced reactions: pi- p --> gamma n, pi- p --> pi0 n, pi- p --> eta n, and pi- p --> pi0 pi0 n.Comment: Conference contribution to MESON 2006 - Krakow, Pola

    Comparison of Communication Architectures for Spacecraft Modular Avionics Systems

    Get PDF
    This document is a survey of publicly available information concerning serial communication architectures used, or proposed to be used, in aeronautic and aerospace applications. It focuses on serial communication architectures that are suitable for low-latency or real-time communication between physically distributed nodes in a system. Candidates for the study have either extensive deployment in the field, or appear to be viable for near-term deployment. Eleven different serial communication architectures are considered, and a brief description of each is given with the salient features summarized in a table in appendix A. This survey is a product of the Propulsion High Impact Avionics Technology (PHIAT) Project at NASA Marshall Space Flight Center (MSFC). PHIAT was originally funded under the Next Generation Launch Technology (NGLT) Program to develop avionics technologies for control of next generation reusable rocket engines. After the announcement of the Space Exploration Initiative, the scope of the project was expanded to include vehicle systems control for human and robotics missions. As such, a section is included presenting the rationale used for selection of a time-triggered architecture for implementation of the avionics demonstration hardware developed by the project tea

    Resistance to Digitisation: Curated Memory Cards Artefact

    Get PDF
    date-added: 2015-03-24 04:16:59 +0000 date-modified: 2015-03-24 04:16:59 +0000date-added: 2015-03-24 04:16:59 +0000 date-modified: 2015-03-24 04:16:59 +0000The act of networking in any context has some element of ceremonial performance attached to it. In an analogue world these performances have historically included the act of exchanging business cards. This ‘ceremony of networking’ has the potential to be altered by the emergence of new media, especially digital technology, displacing the old ceremony of business card exchanges and disrupting what can traditional be seen as networking. The history of business cards have shown that, despite several digital alternatives, they are still resistant to digitisation and so predominantly still physical and tangible. So, we sought to explore the ceremony around giving business cards as the sharing of ‘curated memory’, to better understand how and why we share and co-create curated memories with others. Including the sharing curated memories more generally, and the changing nature of networking, arising from the ever-increasing connectivity and digital embeddedness associated with the information age. Therefore, exploring the ceremony around needing, creating, sharing and using business cards, within different contexts and cultures. Also, identifying the tasks that people are trying to perform and optimise at different stages (before, during, and after) in a range of scenarios. Also, to explore how the ceremonies of networking might be significantly altered as a result of digital media and tools. The approach of using sets of cards around Who, How, Why and Where emerged from the need for a tool that could build narratives around the considerable diversity of the disjointed scenarios of networking we observed. So, the cards provide a reference by which to share general understanding in an entertaining and easily accessible manner. Second, provides a tool to summarise narratives from the scenarios we observed, and that we could then use to create new scenarios to explore insights such as post-meeting curation of ‘shared memories’ when networking. Third, define a number of ‘games’ to help anyone explore how to better understand and utilise aspects of networking in their current approaches, and challenge them to develop new approaches. Therefore, generating debate and self-reflection on the ways players use business cards themselves

    Voigt transmission windows in optically thick atomic vapours: a method to create single-peaked line centre filters

    Get PDF
    Cascading light through two thermal vapour cells has been shown to improve the performance of atomic filters that aim to maximise peak transmission over a minimised bandpass window. In this paper, we explore the atomic physics responsible for the operation of the second cell, which is situated in a transverse (Voigt) magnetic field and opens a narrow transmission window in an optically thick atomic vapour. By assuming transitions with Gaussian line shapes and magnetic fields sufficiently large to access the hyperfine Paschen–Back regime, the window is modelled by resolving the two transitions closest to line centre. We discuss the validity of this model and perform an experiment which demonstrates the evolution of a naturally abundant Rb transmission window as a function of magnetic field. The model results in a significant reduction in two-cell parameter space, which we use to find theoretical optimised cascaded line centre filters for Na, K, Rb and Cs across both D lines. With the exception of Cs, these all have a better figure of merit than comparable single cell filters in literature. Most noteworthy is a Rb-D2 filter which outputs >92% of light through a single peak at line centre, with maximum transmission 0.71 and a width of 330 MHz at half maximum

    The Effects of Cyclic Loading and Motion on the Implant–Cement Interface and Cement Mantle of PEEK and Cobalt–Chromium Femoral Total Knee Arthroplasty Implants: A Preliminary Study

    Get PDF
    This study investigated the fixation of a cemented PEEK femoral TKA component. PEEK and CoCr implants were subjected to a walking gait cycle for 10 million cycles (MC), 100,000 cycles or 0 cycles (unloaded control). A method was developed to assess the fixation at the cement–implant interface, which exposed the implants to a fluorescent penetrant dye solution. The lateral condyles of the implants were then sectioned and viewed under fluorescence to investigate bonding at the cement–implant interface and cracking of the cement mantle. When tested for 100,000 cycles, debonding of the cement–implant interface occurred in both PEEK (61%) and CoCr (13%) implants. When the duration of testing was extended (10 MC), the percentage debonding was further increased for both materials to 88% and 61% for PEEK and CoCr, respectively. The unloaded PEEK specimens were 79% debonded, which suggests that, when PEEK femoral components are cemented, complete bonding may never occur. Analysis of cracks in the cement mantle showed an absence of full-thickness cracks in the unloaded control group. For the 100,000-cycle samples, on average, 1.3 and 0.7 cracks were observed for PEEK and CoCr specimens, respectively. After 10 MC, these increased to 24 for PEEK and 19 for CoCr. This was a preliminary study with a limited number of samples investigated, but shows that, after 10 MC under a walking gait, substantial debonding was visible for both PEEK and CoCr implants at the cement–implant interface and no significant difference in the number of cement cracks was found between the two materials

    Charge-Symmetry Violation in Pion Scattering from Three-Body Nuclei

    Get PDF
    We discuss the experimental and theoretical status of charge-symmetry violation (CSV) in the elastic scattering of pi+ and pi- on 3H and 3He. Analysis of the experimental data for the ratios r1, r2, and R at Tpi = 142, 180, 220, and 256 MeV provides evidence for the presence of CSV. We describe pion scattering from the three-nucleon system in terms of single- and double-scattering amplitudes. External and internal Coulomb interactions as well as the Delta-mass splitting are taken into account as sources of CSV. Reasonable agreement between our theoretical calculations and the experimental data is obtained for Tpi = 180, 220, and 256 MeV. For these energies, it is found that the Delta-mass splitting and the internal Coulomb interaction are the most important contributions for CSV in the three-nucleon system. The CSV effects are rather sensitive to the choice of pion-nuclear scattering mechanisms, but at the same time, our theoretical predictions are much less sensitive to the choice of the nuclear wave function. It is found, however, that data for r2 and R at Tpi = 142 MeV do not agree with the predictions of our model, which may indicate that there are additional mechanisms for CSV which are important only at lower energies.Comment: 26 pages of RevTeX, 16 postscript figure

    Pre-Congestion Notification marking

    Get PDF
    Pre-Congestion Notification (PCN) builds on the concepts of RFC 3168, "The addition of Explicit Congestion Notification to IP". However, Pre-Congestion Notification aims at providing notification before any congestion actually occurs. Pre-Congestion Notification is applied to real-time flows (such as voice, video and multimedia streaming) in DiffServ networks. As described in [CL-DEPLOY], it enables "pre" congestion control through two procedures, flow admission control and flow pre-emption. The draft proposes algorithms that determine when a PCN-enabled router writes Admission Marking and Pre-emption Marking in a packet header, depending on the traffic level. The draft also proposes how to encode these markings. We present simulation results with PCN working in an edge-to-edge scenario using the marking algorithms described. Other marking algorithms will be investigated in the future

    Dynamical landscapes of cell fate decisions

    Get PDF
    The generation of cellular diversity during development involves differentiating cells transitioning between discrete cell states. In the 1940s, the developmental biologist Conrad Waddington introduced a landscape metaphor to describe this process. The developmental path of a cell was pictured as a ball rolling through a terrain of branching valleys with cell fate decisions represented by the branch points at which the ball decides between one of two available valleys. Here we discuss progress in constructing quantitative dynamical models inspired by this view of cellular differentiation. We describe a framework based on catastrophe theory and dynamical systems methods that provides the foundations for quantitative geometric models of cellular differentiation. These models can be fit to experimental data and used to make quantitative predictions about cellular differentiation. The theory indicates that cell fate decisions can be described by a small number of decision structures, such that there are only two distinct ways in which cells make a binary choice between one of two fates. We discuss the biological relevance of these mechanisms and suggest the approach is broadly applicable for the quantitative analysis of differentiation dynamics and for determining principles of developmental decisions
    • …
    corecore