219 research outputs found

    Magnetic irreversibility and Verwey transition in nano-crystalline bacterial magnetite

    Get PDF
    The magnetic properties of biologically-produced magnetite nanocrystals biomineralized by four different magnetotactic bacteria were compared to those of synthetic magnetite nanocrystals and large, high quality single crystals. The magnetic feature at the Verwey temperature, TVT_{V}, was clearly seen in all nanocrystals, although its sharpness depended on the shape of individual nanoparticles and whether or not the particles were arranged in magnetosome chains. The transition was broader in the individual superparamagnetic nanoparticles for which TB<TVT_{B}<T_{V}, where TBT_{B} is the superparamagnetic blocking temperature. For the nanocrystals organized in chains, the effective blocking temperature TB>TVT_{B}>T_{V} and the Verwey transition is sharply defined. No correlation between the particle size and TVT_{V} was found. Furthermore, measurements of M(H,T,time)M(H,T,time) suggest that magnetosome chains behave as long magnetic dipoles where the local magnetic field is directed along the chain and this result confirms that time-logarithmic magnetic relaxation is due to the collective (dipolar) nature of the barrier for magnetic moment reorientation

    Reaction Sequence of Iron Sulfide Minerals in Bacteria and Their Use as Biomarkers

    Get PDF
    Some bacteria form intracellular nanometer-scale crystals of greigite (Fe3S4) that cause the bacteria to be oriented in magnetic fields. Transmission electron microscope observations showed that ferrimagnetic greigite in these bacteria forms from nonmagnetic mackinawite (tetragonal FeS) and possibly from cubic FeS. These precursors apparently transform into greigite by rearrangement of iron atoms over a period of days to weeks. Neither pyrrhotite nor pyrite was found. These results have implications for the interpretation of the presence of pyrrhotite and greigite in the martian meteorite ALH84001

    Microaerobic Conditions Are Required for Magnetite Formation Within \u3ci\u3eAquaspirillum magnetotacticum\u3c/i\u3e

    Get PDF
    The amount of magnetite (Fe3O4) within magnetosomes of the microaerophilic bacterium Aquaspirillum magnetotacticum varies with oxygen and nitrogen supply. The development of optical methods for directly measuring cell magnetism in culture samples has enabled us to quantitate bacterial Fe3O4 yields. We measured final cell yields, average cell magnetic moments, and magnetosome yields of growing cells. Cultures were grown with NO3-, NH4+, or both, in sealed, unshaken vials with initial headspace Po2 values ranging from 0 (trace) to 21 kPa. More than 50% of cells had detectable magnetosomes only when grown in the range of 0.5-5.0 kPa O2. Optimum cell magnetism (and Fe3O4 formation) occurred under microaerobic conditions (initial headspace Po2 of 0.5-1 kPa) regardless of the N source. At optimal conditions for Fe3O4 formation, denitrifying cultures produced more of this mineral than those growing with O2 as the sole terminal electron acceptor. This suggests that competition for O2 exists between processes involving respiratory electron disposal and Fe3O4 formation. Oxygen may also be required for Fe3O4 formation by other species of magnetotactic bacteria. Bacterial Fe3O4 appears to persist in sediments after death and lysis of cells. The presence of bacterial Fe3O4 in the fossil and paleomagnetic records may be of use as a retrospective indicator of sedimentation that has occurred in microaerobic waters

    Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid

    Get PDF
    The mapping of electrostatic potentials and magnetic fields in liquids usingelectron holography has been considered to be unrealistic. Here, we showthat hydrated cells ofMagnetospirillum magneticumstrain AMB-1 and assem-blies of magnetic nanoparticles can be studied using off-axis electronholography in a fluid cell specimen holder within the transmission electronmicroscope. Considering that the holographic object and reference waveboth pass through liquid, the recorded electron holograms show sufficientinterference fringe contrast to permit reconstruction of the phase shift ofthe electron wave and mapping of the magnetic induction from bacterialmagnetite nanocrystals. We assess the challenges of performingin situmagne-tization reversal experiments using a fluid cell specimen holder, discussapproaches for improving spatial resolution and specimen stability, and outlinefuture perspectives for studying scientific phenomena, ranging from interpar-ticle interactions in liquids and electrical double layers at solid–liquidinterfaces to biomineralization and the mapping of electrostatic potentialsassociated with protein aggregation and folding

    Truncated Hexa-Octahedral Magnetite Crystals in Martian Meteorite ALH84001: Evidence of Biogenic Activity on Early Mars

    Get PDF
    The landmark paper by McKay et al. [1] cited four lines of evidence associated with the Martian meteorite ALH84001 to support the hypothesis that life existed on Mars approximately 4 Ga ago. Now, more than five years later, attention has focused on the ALH84001 magnetite grains embedded within carbonate globules in the ALH84001 meteorite. We have suggested that up to approx.25% of the ALH84001 magnetite crystals are products of biological activity [e.g., 2]. The remaining magnetites lack sufficient characteristics to constrain their origin. The papers of Thomas Keprta et al. were criticized arguing that the three dimensional structure of ALH84001 magnetite crystals can only be unambiguously determined using electron tomographic techniques. Clemett et al. [3] confirmed that magnetites produced by magnetotactic bacteria strain MV-I display a truncated hexa-octahedral geometry using electron tomography and validated the use of the multi-tilt classical transmission microscopy technique used by [2]. Recently the geometry of the purported martian biogenic magnetites was shown be identical to that for MV-1 magnetites using electron tomography [6]

    Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution

    Get PDF
    The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB
    • …
    corecore