788 research outputs found

    Global periodicity conditions for maps and recurrences via Normal Forms

    Get PDF
    We face the problem of characterizing the periodic cases in parametric families of (real or complex) rational diffeomorphisms having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two and three dimensional classes of polynomial or rational maps. In particular we find the global periodic cases for several Lyness type recurrences.Comment: 25 page

    ASYMPTOTIC BEHAVIOR OF COMPLEX SCALAR FIELDS IN A FRIEDMAN-LEMAITRE UNIVERSE

    Full text link
    We study the coupled Einstein-Klein-Gordon equations for a complex scalar field with and without a quartic self-interaction in a curvatureless Friedman-Lema\^{\i}\-tre Universe. The equations can be written as a set of four coupled first order non-linear differential equations, for which we establish the phase portrait for the time evolution of the scalar field. To that purpose we find the singular points of the differential equations lying in the finite region and at infinity of the phase space and study the corresponding asymptotic behavior of the solutions. This knowledge is of relevance, since it provides the initial conditions which are needed to solve numerically the differential equations. For some singular points lying at infinity we recover the expected emergence of an inflationary stage.Comment: uuencoded, compressed tarfile containing a 15 pages Latex file and 2 postscipt figures. Accepted for publication on Phys. Rev.

    Low-density series expansions for directed percolation III. Some two-dimensional lattices

    Full text link
    We use very efficient algorithms to calculate low-density series for bond and site percolation on the directed triangular, honeycomb, kagom\'e, and (4.82)(4.8^2) lattices. Analysis of the series yields accurate estimates of the critical point pcp_c and various critical exponents. The exponent estimates differ only in the 5th5^{th} digit, thus providing strong numerical evidence for the expected universality of the critical exponents for directed percolation problems. In addition we also study the non-physical singularities of the series.Comment: 20 pages, 8 figure

    The emerging energy web

    Get PDF
    There is a general need of elaborating energy-effective solutions for managing our increasingly dense interconnected world. The problem should be tackled in multiple dimensions -technology, society, economics, law, regulations, and politics- at different temporal and spatial scales. Holistic approaches will enable technological solutions to be supported by socio-economic motivations, adequate incentive regulation to foster investment in green infrastructures coherently integrated with adequate energy provisioning schemes. In this article, an attempt is made to describe such multidisciplinary challenges with a coherent set of solutions to be identified to significantly impact the way our interconnected energy world is designed and operated. Graphical abstrac

    Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry

    Full text link
    We study both theoretically and experimentally switching dynamics in surface stabilized ferroelectric liquid crystal cells with asymmetric boundary conditions. In these cells the bounding surfaces are treated differently to produce asymmetry in their anchoring properties. Our electro-optic measurements of the switching voltage thresholds that are determined by the peaks of the reversal polarization current reveal the frequency dependent shift of the hysteresis loop. We examine the predictions of the uniform dynamical model with the anchoring energy taken into account. It is found that the asymmetry effects are dominated by the polar contribution to the anchoring energy. Frequency dependence of the voltage thresholds is studied by analyzing the properties of time-periodic solutions to the dynamical equation (cycles). For this purpose, we apply the method that uses the parameterized half-period mappings for the approximate model and relate the cycles to the fixed points of the composition of two half-period mappings. The cycles are found to be unstable and can only be formed when the driving frequency is lower than its critical value. The polar anchoring parameter is estimated by making a comparison between the results of modelling and the experimental data for the shift vs frequency curve. For a double-well potential considered as a deformation of the Rapini-Papoular potential, the branch of stable cycles emerges in the low frequency region separated by the gap from the high frequency interval for unstable cycles.Comment: 35 pages, 15 figure

    Low-density series expansions for directed percolation IV. Temporal disorder

    Full text link
    We introduce a model for temporally disordered directed percolation in which the probability of spreading from a vertex (t,x)(t,x), where tt is the time and xx is the spatial coordinate, is independent of xx but depends on tt. Using a very efficient algorithm we calculate low-density series for bond percolation on the directed square lattice. Analysis of the series yields estimates for the critical point pcp_c and various critical exponents which are consistent with a continuous change of the critical parameters as the strength of the disorder is increased.Comment: 11 pages, 3 figure

    Evolution of the Bianchi I, the Bianchi III and the Kantowski-Sachs Universe: Isotropization and Inflation

    Get PDF
    We study the Einstein-Klein-Gordon equations for a convex positive potential in a Bianchi I, a Bianchi III and a Kantowski-Sachs universe. After analysing the inherent properties of the system of differential equations, the study of the asymptotic behaviors of the solutions and their stability is done for an exponential potential. The results are compared with those of Burd and Barrow. In contrast with their results, we show that for the BI case isotropy can be reached without inflation and we find new critical points which lead to new exact solutions. On the other hand we recover the result of Burd and Barrow that if inflation occurs then isotropy is always reached. The numerical integration is also done and all the asymptotical behaviors are confirmed.Comment: 22 pages, 12 figures, Self-consistent Latex2e File. To be published in Phys. Rev.

    Surface critical behavior of bcc binary alloys

    Full text link
    The surface critical behavior of bcc binary alloys undergoing a continuous B2-A2 order-disorder transition is investigated in the mean-field (MF) approximation. Our main aim is to provide clear evidence for the fact that surfaces which break the two-sublattice symmetry generically display the critical behavior of the NORMAL transition, whereas symmetry-preserving surfaces exhibit ORDINARY surface critical behavior. To this end we analyze the lattice MF equations for both types of surfaces in terms of nonlinear symplectic maps and derive a Ginzburg-Landau model for the symmetry-breaking (100) surface. The crucial feature of the continuum model is the emergence of an EFFECTIVE ORDERING (``staggered'') SURFACE FIELD, which depends on temperature and the other lattice model parameters, and which explains the appearance of NORMAL critical behavior for symmetry-breaking surfaces.Comment: 16 pages, REVTeX 3.0, 13 EPSF figures, submitted to Phys. Rev.

    The Einstein static universe in Loop Quantum Cosmology

    Get PDF
    Loop Quantum Cosmology strongly modifies the high-energy dynamics of Friedman-Robertson-Walker models and removes the big-bang singularity. We investigate how LQC corrections affect the stability properties of the Einstein static universe. In General Relativity, the Einstein static model with positive cosmological constant Lambda is unstable to homogeneous perturbations. We show that LQC modifications can lead to a centre of stability for a large enough positive value of Lambda.Comment: 12 pages, 7 figures; v2: minor changes to match published version in Classical and Quantum Gravit

    On the Past Asymptotic Dynamics of Non-minimally Coupled Dark Energy

    Full text link
    We apply dynamical systems techniques to investigate cosmological models inspired in scalar-tensor theories written in the Einstein frame. We prove that if the potential and the coupling function are sufficiently smooth functions, the scalar field almost always diverges into the past. The dynamics of two important invariant sets is investigated in some detail. By assuming some regularity conditions for the potential and for the coupling function, it is constructed a dynamical system well suited to investigate the dynamics where the scalar field diverges, i.e. near the initial singularity. The critical points therein are investigated and the cosmological solutions associated to them are characterized. We find that our system admits scaling solutions. Some examples are taken from the bibliography to illustrate the major results. Also we present asymptotic expansions for the cosmological solutions near the initial space-time singularity, which extend in a way previous results of other researchers.Comment: 38 pages, 2 figures, accepted for publication in CQ
    corecore